
Ordinary spring exam 02465 May 24th, 2023

Written examination date: May 24th, 2023
Course title: Introduction to reinforcement learning and control
Course number: 02465
Aids allowed: All aids allowed
Exam duration: 4 hours

Weighting: The exam is divided into 3 parts:
• Multiple-Choice questions
• Conceptual questions
• Programming questions

The overall scores of each part contribute roughly equally towards the overall result. Each
question in each part contribute equally towards the score of that part.
Part I: Questions 1-9 are multiple choice. The score of a correct answer is 3 points. The
score of an incorrect answer is −1 points. The score of option E or blank is 0 points.
Part II and part III: Each completed sub-task contribute towards your score.
Preparing your handin: The three parts are prepared as follows:
Part I: Edit the file irlc/exam/exam2023spring/multiple_choice_answers.py . Don’t include calcula-

tions. Only answer with 'A' , 'B' , 'C' , 'D' , 'E' .
Part II: Create a PDF file with your answers and justifications.
Part III: Program your answer in the .py -files indicated in the question and run

irlc/exam/exam2023spring/exam2023spring_tests_grade.py to generate your .token -file.
Handing in: To hand in, you should upload the files:

• The irlc/exam/exam2023spring/multiple_choice_answers.py -file with your answer to part I

• The .pdf -file with your answers to part II

• The .token -file with your answers to part III

• The irlc/exam/exam2023spring/question_inventory.py source file containing your solution

• The irlc/exam/exam2023spring/question_lqr.py source file containing your solution

• The irlc/exam/exam2023spring/question_bandit.py source file containing your solution

Note on part II: The main quantities asked for are highlighted as f(x) . Answer

unambigiously, concisely, and if applicable with algebraic simplifications. Your final result

must be clearly indicated at the end of your answer: f(x) = 3 sin(x) . To get credit, you

must state the relevant theory and equations, and all relevant calculations must be included.
Credit is not given for answers with missing or erroneous justifications.
Note on part III: To get started, move the folder irlc/exam/exam2023spring from the .zip file
to the corresponding location in your existing exercise directory. The .py source files must
be reproducible and readable so that someone else can run and fully understand your
solution. You can freely use the irlc -toolbox (including solutions) and the packages we
have used in the course, but you must include additional code you write during the exam
or have prepared beforehand in the source files listed above. The source files must not be
renamed. The .token file contains your results and must be up to date with your source files,
i.e., generate it just prior to handin. In the case they differ, the .token file takes precedence.
Credit is given for correct implementations defined by the problem description. The points
in the .token file name is computed from the public tests, and might not correspond to
overall correctness.
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Figure 1: Plot of PID controller

Part I: Multiple-Choice

Question 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Suppose we want to apply the dynamical programming algorithm to chess 1. This will lead to several
practical problems, however, focusing just on the potential problems listed below, which one will be
a main obstacle in terms of obtaining a near-perfect chess policy using the dynamical programming
algorithm?

A. Within a few iterations, the policy function µk will require too much memory to store

B. Given a state xk, it is not practical to define the action spaces Ak(xk)

C. It will require too much space to store the state space S2

D. There is no reasonable choice of planning horizon N

E. Don’t know.

Solution: The correct answer is A.

A. It will be impossible to store the policy as it requires as much space as the size of the
state space. I.e. policy µN−1 (the first we would potentially compute) would require |SN−1|
memory.

B. The action spaces are just the available actions, and can thus be derived from the rules of
chess (each action space contains about 10 elements)

C. The second state space is still reasonably small, containing about 104 states

D. Considering a typical game is about 45 moves, a planning horizon of N = 100 would easily
be sufficient

Question 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider PID control applied to steer a car along a straight track. The control signal uk corresponds
to the angle between the front wheel and the centerline of the track, the input signal xk corresponds to
the angle between the car body and the track in degrees, and the goal of the PID controller is to bring
the angle between the car body and the track to a value of x∗ = 4 degrees (corresponding to executing

1We don’t consider time control as part of the problem.

Question 2 continues on the next page. . .
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a turn). Figure 1 shows the behavior of both xk and uk at time steps k = 0, 1, 2, . . . . Suppose the PID
controller takes the form described in the lecture notes, and assume Kd = Ki = 0, which one of the
following options are true?

A. Kp = 1

B. Kp = 2

C. Kp = 3

D. There is not enough information to determine the correct answer

E. Don’t know.

Solution: The correct answer is C.

The initial error is e = x∗ − x = 4− 6.0 = −2.0. We can therefore compute

Kp =
u0

e
=

−6.0

−2.0
= 3.
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Arm a = 0 Arm a = 1 Arm a = 2 Arm a = 3
Nt(a) 14 11 6 3

Total reward St(a) 45 31 15 5

Table 1: Outcome of simulating a k-armed bandit problem for a few iterations

Question 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which one of the following options are correct about direct control using trapezoid collocation?

A. It is an example of open-loop control

B. It cannot take constraints into account

C. It requires us to specify a fixed initial state x0 = x(t0)

D. It can only be applied to quadratic cost functions

E. Don’t know.

Solution: The correct answer is A.

A. Direct control computes a single control path u(t) and is therefore an example of open-loop
control

B. Direct control takes constraints into account as part of the optimization; c.f. the pendulum
swingup example.

C. Neither the initial or terminal state needs to be fixed.

D. Although we only consider quadratic cost functions in the exercises, direct control is formu-
lated for a general cost function

Question 4: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Suppose iterative LQR is applied to steer the racecar from the car-example ([Her25, section 10.4.3])
through the track. Which of the following statements are true about the dimensions of the linearized
matrices Ak and Bk?

A. The dimension of Ak is 6× 6 and the dimension of Bk is 6× 2

B. The dimension of Ak is 6× 2 and the dimension of Bk is 6× 1

C. The dimension of Ak is 2× 2 and the dimension of Bk is 2× 6

D. The dimension of Ak is 6× 6 and the dimension of Bk is 2× 2

E. Don’t know.

Solution: The correct answer is A.

The state has 6 dimensions and the control signal has 2 dimensions. It follows that Ak must be 6× 6
and the dimension of Bk must be 6× 2, otherwise it could not be the case that

xk+1 = Akxk +Bkuk + dk

Question 5: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider a k-armed bandit problem with k = 4. Suppose we are at time step t, and we denote by Nt(a)
the total number of times we have pulled arm a = 0, 1, 2, 3 up to now, and by St(a) the sum of all

Question 5 continues on the next page. . .
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rewards we have obtained by pulling arm a, i.e. in the notation [SB18][Eq. 2.1]

St(a) = {Sum of rewards when a taken prior to t} =

t−1∑
i=1

Ri · 1Ai=a

Nt(a) = {Number of times a taken prior to t} =

t−1∑
i=1

1Ai=a.

These values have been collected in table 1. Suppose we apply UCB1 to the problem using c = 2. Which
arm will be selected next?

A. UCB1 selects arm At = 0

B. UCB1 selects arm At = 1

C. UCB1 selects arm At = 2

D. UCB1 selects arm At = 3

E. Don’t know.

Solution: The correct answer is A.

To solve this problem, recal the definition of the UCB1 algorithm that it selects the arm according to

At = argmax
a

[
St(a)

Nt(a)
+ c

√
log(t)

Nt(a)

]

where t = 1 +
∑k−1

a=0 Nt(a). This gives the three upper-confidence values:

q0 = 4.222, q1 = 3.955, q2 = 4.04, q3 = 3.844.

Using this, it is easy to see that arm a = 0 will be selected as it has the higher upper-confidence bound
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Figure 2: A gridworld environment and the Q-values updated by applying first-visit Monte-Carlo for one
episode. The plot is for illustration purposes, and the problem can be solved without consulting the particular
values shown here.

Question 6: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let v∗, q∗ be the optimal value and action-value functions of an MDP, let π be any policy and finally let
vπ and qπ be the value/action-value function associated with π. Which one of the following statements
are true in general?

A. maxs q∗(s, a) = v∗(a)

B. There is a policy π, a state s and an action a so that q∗(s, a) < qπ(s, a)

C. For all π and a it is true that q∗(s, a) > qπ(s, a)

D. There is a policy π and state s so that maxa q∗(s, a) = vπ(s)

E. Don’t know.

Solution: The correct answer is D.

A. This statement is meaningless since v∗ is defined on states not actions

B. This is false since q∗ is obtained by maximizing over policies

C. This is false when π is the optimal policy

D. This is true for all states when π is the optimal policy

Question 7: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We consider the familiar gridworld environment discussed in [Her25, section 4.2.4] shown in fig. 2. The
agent receives a reward of +1 on completion (the upper-right square), and otherwise a living reward of
−2. Recall that in first visit Monte-Carlo control (see [SB18, Section 5.3]), the action-values Q(s, a) are
computed as the average of the returns. Suppose that during a particular episode, the returns computed
by first-visit monte carlo are G0, G1, . . . , GT−1 (for illustration purposes, fig. 2 shows a single update of
first-visit monte carlo with our choice of rewards, and for particular choices of γ, α). What relationship
holds true for the returns in the beginning of the episode, i.e. t ≤ T − 2?

A. Gt = γGt+1 − 2

Question 7 continues on the next page. . .
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B. Gt+1 = αGt − 2γ +GT γ
T

C. Gt = αGt+1γ
t

D. Gt = −2γt + 1

E. Don’t know.

Solution: The correct answer is A.

This problem can be solved by observing how the return are iteratively computed in the first-visit
Monte-Carlo method or by inspecting the definition. In either case it is true that

Gt = Rt+1 + γGt+1.
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Question 8: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which of the following statements are true about TD(λ)?

A. TD(λ) cannot be used with function approximators

B. The role of the eligibility trace is to let reward obtained earlier in an episode affect the change
in the value function later in the episode

C. The eligibility trace cannot be negative

D. The eligibility trace is a measure of the amount of reward obtained in a given state weighted
by an exponential factor

E. Don’t know.

Solution: The correct answer is C.

A. TD(λ) works excellently with function approximators (one of the early successes in reinforce-
ment learning, TD-gammon in the mid 90s, used TD(λ) with function approximators)

B. The role is to interpolate between Monte-Carlo learning and TD(0). The eligibility trace
allows reward obtained later in the episode to propagate backwards in time.

C. The eligibility trace cannot be negative by definition (it is defined as sum / products of
positive numbers)

D. The reward function has no influence on the eligibility trace

Question 9: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which one of the following statements about Q-learning is correct?

A. The first step in training a Q-learning agent is to compute the set of all states the agent can
be in

B. The Q-table Q(s, a) in Q-learning is a measure of the reward the agent will obtain in the very
next step multiplied by γ

C. Q-learning still works if we initialize the Q-table to −1, i.e. Q(s, a) = −1 for all s ∈ S
D. WhenQ-learning is applied to a deterministic environment, the agent will follow a deterministic

policy

E. Don’t know.

Solution: The correct answer is C.

A. Q-learning does not require us to know the set of all reachable states from the onset (although
if it is run to convergence it will end up computing them)

B. The Q-table measures the discounted accumulated reward

C. This is true. Q-learning forgets the initial value of the Q-table (although it may affect
exploration depending on the reward function)

D. This is not true. Q-learning requires exploration to work, hence it will sometimes act ran-
domly
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Part II: Conceptual questions

Question 10: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider a control problem where a control signal u(t) ∈ R is applied to control a system with state
x(t) ∈ R, and where the dynamics satisfy the following differential equation:

ẋ = f(x, u) = 4ux (1)

The first two questions will assume the problem has been discretized using a time constant of ∆ = 0.5
to yield states x0, x1, x2, · · · and control signals u0, u1, u2, . . . .

(a) Assume the problem is Euler discretized. Determine the discrete dynamics fk used to compute

xk+1 = fk(xk, uk).

Solution: Simply inserting into the equation for Euler discretization, xk+1 = xk + ∆f(xk, uk),
we get:

fk(xk, uk) = 2.0ukxk + xk (2)

(b) Continuing the previous problem, suppose we wish to apply a LQR controller to control the system
near a state x̄. The system is therefore linearized around x̄ and ū = 1 to give rise to the linearized
dynamics xk+1 = Axk +Buk + d. Determine A , B and d in terms of x̄.

Solution: The general linearized expression is:

fk(xk, uk) ≈ 2.0ūx̄+ 2.0x̄ (−ū+ uk) + x̄+ (2.0ū+ 1) (−x̄+ xk)

and inserting the known value for ū we get:

fk(xk, uk) ≈ 2.0x̄ (uk − 1) + 3.0xk

So that A =
[
3.0

]
, B =

[
2.0x̄

]
and d =

[
−2.0x̄

]
.
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Figure 3: An example gridworld environment that Sarsa is applied to. The figure shows the current Q-values.

Question 11: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Suppose that Sarsa (using discount factor γ = 1, a learning rate α = 0.9 and an exploration rate of
ε = 0.1) is applied to the Gridworld MDP shown in fig. 3. The living reward is 0, and the dynamics is
deterministic. Recall that pacman stay at the current state if he choose an action which moves him into
a wall. The current state of the agent is as indicated in the figure.

(a) Suppose that in the next step of the Sarsa algorithm, the agent takes (and execute) the action
North in the current position s. Upon taking this action, the Q-value associated with the red cross
Q(s, North) will be updated by Sarsa.

What are the possible value(s) of Q(s, North) after this step? (if there are more than one, list all

of them).

Solution: Since the immediate reward is zero, the next Q-value will be determined by the Q-value
associated with the state north of the agent and the action the agent generates in that state:

Q(s, a) = Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))

If the exploration rate is non-zero, all actions a′ may occur, giving rise to two different new values.

This mean the Q-value can be updated to:

Q(s, North) = 0.0, 0.432

(b) In the previous question, we took one step, performed a single action North, and updated one
Q-value.

In this question, suppose again that the agent starts in the position indicated in fig. 3 and assume
Sarsa is applied to update the Q-values shown in the figure.

Different sequences of future actions will result in different Q-values being updated. What are the
minimum number of steps which are required before the Q-value associated with the green circle

can take a value different than 0, and what actions will the agent take in this case? Give your
answer as a list of actions.

Question 11 continues on the next page. . .
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Solution: It is evident that we need to propagate the Q-value from the northern square to the
Q-value we wish to update. To do this, we first go north, but then to change the Q-value we
must select east in that state. Therefore, we backtrack (west, south). Pacman will now be on
the current state, and a single step west will mean pacman updates the green Q-value, and it can
be updated to a non-zero value since the next action generated by Sarsa can select the Q-value
associated by the red square by moving A′ = north. The answer is therefore 5 and the actions
are:

north, east, west, south, west

Note: Since the question asks for the number of steps this is the right answer. However, an answer
that included the last (not yet executed) north-action would also have been accepted. If you want,
you can re-create the example using the Sarsa-demo in irlc/lectures/lec11/lecture_11_sarsa.py

(c) Sarsa learning has clearly not converged in the example shown above. However, assume we apply
a more realistic version of Sarse where γ = .95, and where importantly α decrease to 0 at a rate
satisfying the stochastic approximation conditions [SB18, Eq. (2.7)] for convergence so that the
Q-values converge to their true values under Sarsa.

Consider the two Q-value associated with moving North and East Qn, Qe, indicated by the blue n,
e-letters in fig. 3. After convergence, it must be the case that either they will have the same value,
Qn = Qe, or one will be greater than the other: Qn > Qe or Qn < Qe. State which is the case
and provide a clear and specific argument for your answer.

Solution: After convergence, Sarsa will have learned theQ-values associated with the ε-soft policy
π, i.e. to qπ. It will clearly attempt to move the agent towards the goal square with a +1 reward,
and since γ < 1 it will attempt to do so quickly. The fastest way to do that is either north or south
of the central pillar. The southern way, associate with Qe, takes the agent next to the dangerous
square with a −1 reward. There is a chance of at least ε

4 of randomly falling into that square using
the ε-soft policy. We can therefore conclude this path is far more dangerous, and this must be
reflected in the Q-values. Hence, Qe < Qn. Note that this will not be true for Q-learning, where
the two paths are the same. Note this argument is similar to the cliffwalking example we saw in
the exercises and in [SB18]. It can also be confirmed by inspecting the converged value of Sarsa
shown below:
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s1 s2R = 1, p = 1
2

R = 0, p = 1
2

R = 0, p = 1
2

R = 2, p = 1
2

Figure 4: A simple MRP

Question 12: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider a Markov Reward Process with two states s1 and s2 and a discount factor of 0 < γ < 1 shown
in fig. 4 2. With equal probability 1

2 , the system will either stay in the current state or transition to the
other state. The MRP never terminates.

• When the system transition s1 to s2 (or s2 to s1) it will receive a reward of 0,

• If it transition from s1 to s1 it will receive a reward of 1,

• If it transition from s2 to s2 it will receive a reward of 2.

Since there are two states, the value function vπ takes two values v1, v2 ∈ R defined as: v1 = vπ(s1) and
v2 = vπ(s2).

(a) Assume for a moment that v2 = 5
2 and γ = 2

3 . What is v1 ? (i.e. the value function in s1, vπ(s1))

Solution: Recall Bellmans equation (it does not matter which) says: v(s) = E[R+γv(s′) | St = s].
Therefore:

v1 =
1

2
(R+ γv1) +

1

2
γv2 =

1

2
(1 + γv1 + γv2)

Solving we get that v1 = 1+γv2

2−γ = 2

(b) Ignore the previous question and consider the general form of the problem. As the name suggest,
when Bellmans expectation equations are applied to this problem we obtain two equations. Write

them as a linear system of the form b = Av where v =

[
v1
v2

]
. State what A and b are as

functions of γ.

Solution: We already got the first equation from the previous problem. Both equations are:

−1 = (γ − 2)v1 + γv2

−2 = (γ − 2)v2 + γv1

So therefore [
−1
−2

]
=

[
γ − 2 γ
γ γ − 2

]
v

2Recall a Markov Reward Process is a Markov decision process without actions, see [SB18, Example 6.2].



Page 13 of 16

Part III: Programming questions

Question 13: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To solve this question, you should edit the file irlc/exam/exam2023spring/question_inventory.py . This

problem focuses on a variant of the inventory control problem discussed in [Her25, section 5.1.2]. This
inventory problem represents a flower-store such that xk denotes the number of flower bouquets in stock
at planning round k. The original inventory control model and the dynamical programming algorithm
is included in the exam folder.

The following tasks can be solved by implementing suitable variants of the inventory control problem,
and then applying dynamical programming to determine the optimal policy µ∗

0(x0) and cost-function
J∗(x0) in the starting state.

The flower store problem is equivalent to the inventory control problem on a horizon of N with two
changes:3:

• gk(xk, uk, wk) = cu+ |xk + uk − wk|
• The distribution of the number of items customers buy wk is:

pW (wk = 0|xk, uk) = 0.1, pW (wk = 1|xk, uk) = 0.3, pW (wk = 2|xk, uk) = 0.6.

(a) Complete def a_get_policy(N: int, c: float, x0 : int) : This function is given a value of N , c and a

starting state x0, and should return the action the optimal policy computes in x0, i.e. µ
∗
0(x0) as an

int .

(b) Complete def b_prob_one(N : int, x0 : int) : For every policy and starting state x0, there is a certain

chance p(xN = 1|x0) we will end up with a single item (bouquet) on the last day N when following
the policy. The clerk operating the store would very much like to bring this last bouquet home with
her, and so she is solely concerned with determining the policy which maximize p(xN = 1|x0), i.e.
the chance she can bring home a single bouquet at the end of the planning period.

Determine what this chance is when we follow the policy which is solely concerned with with
maximizing the chance that xN = 1. The function should accept N and x0 as input argument, and
return the value of p(xN = 1|x0) as a float .

Hint: Alter the cost-functions so that the optimal solution maximize this probability. The Pacman-
problems where we computed the probability of winning may provide inspiration.

Solution:

The solution can be found in this directory as a .py file.

3The expression |x| return the absolute value, i.e. |4| = | − 4| = 4
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Question 14: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To solve this question, you should edit the file irlc/exam/exam2023spring/question_lqr.py . In this

problem, we will consider the Pendulum-swingup task described in [Her25, section 10.4.1]. Recall that
in this problem, the state of the pendulum is two-dimensional:

x =

[
θ

θ̇

]
and under application of a control signal u, the state satisfies the differential equation:

θ̈ =
g

l
sin(θ) +

u

ml2
, g = 9.82, l = 1, m = 0.8. (3)

(The pendulum model is implemented as the class ContiniousPendulumModel in the file irlc/ex04/model_pendulum.py

in the toolbox ). This model is assumed to be discretized using Euler discretization with a time constant
of ∆ = 0.5 seconds, but without applying coordinate transformations. In other words, the discrete

coordinates correspond to xk =

[
θk
θ̇k

]
.

We want to eventually apply LQR to the problem. However, before we get to that we will consider how
to simply apply discrete LQR to a comparable linear problem.

(a) Complete def a_LQR_solve(a : float, x0 : np.ndarray) : This function consider a discrete problem with
cost matrices Q = R = I and where the dynamics depends on a parameter a given by

xk+1 =

[
1 a
0 1

]
xk +

[
0
1

]
uk +

[
1
0

]
The function should apply discrete LQR to the problem on a horizon sufficiently long to guarantee
convergence4 of the policy matrices L0, l0 and return the first action u0 the discrete LQR controller
wish to execute in state x0. The action should be returned as a float .

(b) Complete def b_linearize(theta : float) : Return to the general formulation eq. (3). Given an angle

θ, this function should linearize the discretized model around x̄ =

[
θ
0

]
and ū = 0, and return three

numpy ndarray objects A, B and d of the right dimension corresponding to the linearized problem.
I.e., it should hold approximately for states and actions close to the linarization point x̄, ū that

xk+1 ≈ Axk +Buk + d

(c) Complete def c_get_optimal_linear_policy(x0 : np.ndarray) : We are now ready to build our controller.
Given input state x0, specified as an np.ndarray , this function should linearize the pendulum problem

around x̄ =

[
0
0

]
and ū = 0, then solve the linearized problem using LQR (using a sufficiently long

horizon to guarantee convergence and using Q = R = I), and then finally return the action the
LQR controller will take in the x0 as a float .

Solution:

The solution can be found in this directory as a .py file.

4For instance N = 100
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To solve this question, you should edit the file irlc/exam/exam2023spring/question_bandit.py . In this
question, you will use bandit algorithms to determine which of k actions, corresponding to advertise-
ments, are the best based on the clicks-per-hour they result in when presented to users. The bandit
algorithm we will first consider will be the simple bandit algorithm presented in [SB18][Section 2.4]. The
data will be presented to the algorithm in the shape of a list of actions (a1, a2, . . . , at−1) ( actions ) and
a list of corresponding rewards (r1, r2, . . . , rt−1) ( rewards ). The actions will be assumed to be integers
0, 1, . . . , k − 1.

(a) Complete def a_select_next_action_epsilon0(k : int, actions : list, rewards : list) : Given a number of arms
k, a list of t − 1 actions actions and rewards rewards , this function should return the next action
at as an int generated according to the bandit algorithm described in [SB18][Section 2.4] when
trained on the data, but assuming we act greedily all the time: ε = 0.

(b) Complete def b_select_next_action(k : int, actions : list, rewards : list, epsilon : float) : Consider again

the simple bandit algorithm in [SB18][Section 2.4]. In addition to the previous input, the function
should now also accept a exploration rate ε ≥ 0. The function should return the action at as an
int generated according to the simple bandit algorithm.

(c) Complete def c_nonstationary_Qs(k : int, actions : list, rewards : list, alpha : float) : This function should

implement the non-stationary simple bandit algorithm with α-soft updates described in [SB18][Section
2.5]. The inputs have the same meaning as before, but the function should also accept the learning
rate α as an input argument. The function should return a dictionary which has actions a as keys,
and their corresponding Q-value Q(a) as values.

Solution:

The solution can be found in this directory as a .py file.

Question 15 continues on the next page. . .
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