
Exam 02465 May 27th, 2024

Written examination date: May 27th, 2024
Course title: Introduction to reinforcement learning and control
Course number: 02465
Aids allowed: All aids allowed
Exam duration: 4 hours

Weighting: The exam is divided into 3 parts:
• Multiple-Choice questions
• Conceptual questions
• Programming questions

The overall scores of each part contribute roughly equally towards the overall result. Each
question in each part contribute equally towards the score of that part.
Part I: Questions 1-9 are multiple choice. The score of a correct answer is 3 points. The
score of an incorrect answer is −1 points. The score of option E or blank is 0 points.
Part II and part III: Each completed sub-task contribute towards your score.
Preparing your handin: The three parts are prepared as follows:
Part I: Edit the file irlc/exam/exam2024spring/multiple_choice_answers.py . Don’t include calcula-

tions. Only answer with 'A' , 'B' , 'C' , 'D' , 'E' .
Part II: Create a PDF file with your answers and justifications.
Part III: Program your answer in the .py -files indicated in the question and run

irlc/exam/exam2024spring/exam2024spring_tests_grade.py to generate your .token -file.
Handing in: To hand in, you should upload the files:

• The irlc/exam/exam2024spring/multiple_choice_answers.py -file with your answer to part I

• The .pdf -file with your answers to part II

• The .token -file with your answers to part III

• The irlc/exam/exam2024spring/question_inventory.py source file containing your solution

• The irlc/exam/exam2024spring/question_bill_mdp.py source file containing your solution

• The irlc/exam/exam2024spring/question_control.py source file containing your solution

Note on part II: The main quantities asked for are highlighted as f(x) . Answer

unambigiously, concisely, and if applicable with algebraic simplifications. Your final result

must be clearly indicated at the end of your answer: f(x) = 3 sin(x) . To get credit, you

must state the relevant theory and equations, and all relevant calculations must be included.
Credit is not given for answers with missing or erroneous justifications.
Note on part III: To get started, move the folder irlc/exam/exam2024spring from the .zip file
to the corresponding location in your existing exercise directory. The .py source files must
be reproducible and readable so that someone else can run and fully understand your
solution. You can freely use the irlc -toolbox (including solutions) and the packages we
have used in the course, but you must include additional code you write during the exam
or have prepared beforehand in the source files listed above. The source files must not be
renamed. The .token file contains your results and must be up to date with your source files,
i.e., generate it just prior to handin. In the case they differ, the .token file takes precedence.
Credit is given for correct implementations defined by the problem description. The points
in the .token file name is computed from the public tests, and might not correspond to
overall correctness.
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Figure 1: Plot the behavior of a system xk and four possible PID control trajectories u
(1)
k , u

(2)
k , u

(3)
k , and

u
(4)
k .

Part I: Multiple-Choice

Question 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Suppose we wish to steer a servo motor towards a desired angle x∗ = 4. This can be accomplished by
applying a control signal uk at time steps k = 0, 1, . . . , computed from the current angle xk using a PID
controller with target x∗ and PID constants:

Kp = 2.0, Ki = 0.0, Kd = 0.0.

Figure 1 shows the behavior of both xk, as well as four possible control signals u
(1)
k , u

(2)
k , u

(3)
k , and u

(4)
k

at time steps k = 0, 1, 2, . . . .
Which one of the four possible control signals corresponds to the true control signal uk of the system?

A. Control trajectory u
(1)
k

B. Control trajectory u
(2)
k

C. Control trajectory u(3)

D. Control trajectory u
(4)
k

E. Don’t know.

Solution: The correct answer is C.

It is simplest to focus on the first time step as the integral terms will only affect the system at later
times. In the first time stpe, the error is e = x∗ − x = 4− 10.0 = −6.0. We can therefore compute

u0 = Kpe = 2.0 · (−6.0) = −12.0.

Question 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider an episodic MDP, and assume as usual that Gt represents the γ-discounted accumulated return.
Which one of the following (alternative) Bellman-like recursions are true for the value function vπ?

A. vπ(s) =
1
2E[Rt+1 + γvπ(St+1) +Gt | St = s]

B. vπ(s) =
1
2E[Gt + γvπ(St+1) | St = s]

Question 2 continues on the next page. . .
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C. vπ(s) = E[Rt+1 + γGt | St = s]

D. vπ(s) = E
[
Rt+1+Rt+2

2 + γvπ(St+2) | St = s
]

E. Don’t know.

Solution: The correct answer is A.

The right answer is A. There are two ways to solve the problem. The first is by calculation:

1

2
E[Rt+1 + γvπ(St+1) +Gt | s] =

1

2
E[Rt+1 + γvπ(St+1) | s] +

1

2
E[Gt | s] =

1

2
vπ(s) +

1

2
vπ(s)

In the last step we used the (main) Bellman equation and the definition of the value function.

An even faster way to approach the problem is to note that Rt+1+γvπ(St+1) and Gt are both estimates
of the value function and therefore so is their average – a fact we use extensively in the course! (c.f.
week 12).
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Question 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which one of the following options are correct about iterative LQR as seen in the course?

A. The quantity α denotes the learning rate. It represents a tradeof between stability and rate of
convergence, and is selected by the user.

B. It use an optimizer (such as scipy) to determine the optimal actions

C. At a given time step k, the policy computed by iterative LQR is a linear function of the input
state xk

D. It uses Model-predictive control to plan on a short horizon

E. Don’t know.

Solution: The correct answer is C.

A. The quantity α denote the size of the individual updates. It is a parameter updated within
the algorithm and not determind by the user.

B. It uses discrete LQR and not an optimizer

C. Iterative LQR outputs a sequence of control matrices/vectors (c.f. the policy code for the
iterative LQR agent)

D. Although iLQR can be combined with MDP, this is not done in this course

Question 4: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which one of the following statements about Every-visit Monte-Carlo prediction for estimating the value
function vπ is correct?

A. Every-visit Monte-Carlo prediction can be used to estimate the value function vπ when the
policy π is deterministic.

B. The prefix every in every-visit Monte-Carlo prediction refers to the fact every action is tried
at least once in every episode

C. The prefix every in every-visit Monte-Carlo prediction refers to the fact every state is visited
at least once in every episode

D. Every-visit Monte-Carlo prediction is biased in the sense that during training, it will tend to
systematically over-estimate the value function

E. Don’t know.

Solution: The correct answer is A.

A. This is true; Every-visit Monte-Carlo prediction does not distinguish between whether the
policy is deterministic or not.

B. Every action does not have to be taken

C. Every state is does not have to be visited during an episode – in fact this is very unlikely

D. Although every visit is typically biased, whether it over or under-estimate the vπ depends on
the problem.

Question 5: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which one of the following statements are true about tabular double Q-learning ([SB18, Chapter 6])?

A. Double-Q learning reduces bias in the estimated action-value function by computing the Q-
values as the average of two biased estimates Q1 and Q2

Question 5 continues on the next page. . .
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B. Double-Q learning reduces bias by letting Q1 under-estimate the optimal action-value function
and letting Q2 over-estimate the optimal action-value function

C. In each step t, either Q1 or Q2 are updated by double-Q learning. If both were updated, the
algorithm would estimate 2q∗ and not q∗ (i.e. twice the optimal action-values)

D. After running the method for a long time the two Q functions will be approximately equal
Q1 ≈ Q2

E. Don’t know.

Solution: The correct answer is D.

Double-Q learning update Q1 and Q2 using normal Q-learning updates, except that the action-selecting
in one depends on the action-values in the other to reduce bias. This means both Q1 and Q2 converge
to q∗ and therefore:

A. Averaging two biased estimates would not reduce bias. The mechanism for reducing bias has
to do with selecting actions in Q1 and using those actions in Q2.

B. Since the updates of Q1 and Q2 are symmetric this does not make sense

C. Since Q1 and Q2 are valid learning rules individually it is just an algorithmic choice to only
update one in each step.

D. This is true since Q1, Q2 → q∗. See also p. 135 (mid) of [SB18]

Question 6: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider the DP algorithm applied to the inventory control example described in [Her25, section 5.1.2].
Assume that we plan on a long horizon N (for instance N = 1000), and consider k as corresponding to
being approximately halfway through the planning, i.e. k ≈ N

2 . Which one of the following statements
are true?

A. The function Jk requires about N
2 times more memory to store than J1

B. J0(xk) < Jk(xk)

C. Jk(xk) represents the expected accumulated cost the optimal policy obtained during planning
rounds 0, 1, . . . , k

D. Jk(xk) ≥ 0

E. Don’t know.

Solution: The correct answer is D.

A. Recall that Jk(xk) are defined for all states xk. Since the number of states are the same for
each k the memory requirement is independent of k.

B. Since the costs are positive, and accumulate over time, we expect the values in J0 to be the
largest.

C. Jk(xk) represents the expected accumulated future costs when starting in xk, not the cost up
to k.

D. The terminal cost is zero and the immediate cost is always positive. Therefore, Jk(xk) > 0

Question 7: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We consider the familiar gridworld environment discussed in [Her25, section 4.2.4] shown in fig. 2.

Question 7 continues on the next page. . .
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Figure 2: A gridworld environment with randomly initialized Q-values. The living reward is +1.

Suppose that Q-learning (using discount factor γ = 0.9 and learning rate α = 0.8) is applied to the
Gridworld MDP shown in fig. 2. The living reward is Rt = 1, and the dynamics is deterministic. The
current state st of the agent is as indicated in the figure.

As can be seen, the Q-values have been initialized randomly, but this does not alter how Q-learning
function. Assuming the agent takes the action North, what will be the new value of the Q-value
indicated by the blue question mark?

A. 1.826

B. 1.957

C. 2.468

D. 2.567

E. Don’t know.

Solution: The correct answer is A.

The solution can be found by applying the Q-learning update rule:

Q(s, a)← Q(s, a) + α(Rt + γmax
b

Q(s′, b)−Q(s, a))

By inspecting the figure, we see that (originally) Q(s, a) = −0.741, maxb Q(s′, b) = 1.631 and therefore
the updated value is Q(s, a) = 1.826.

Question 8: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which of the following statements are true about UCB and the 10-armed testbed described in [SB18,
Chapter 2]?

A. Assuming the average rewards q∗(a) are fixed across runs, it will still be the case that the
action sequence of actions a1, a2, . . . generated by UCB will be different across different runs.

B. Over time, the upper-confidence bounds which are used to select actions, Qt(a) + c
√

ln t
Nt(a)

,

will all converge to the true Q-values q∗(a)

Question 8 continues on the next page. . .
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C. The number c ≥ 0 acts as a regularization constant. A higher value of c will tend to stabilize
the algorithm numerically, at the cost that the Qt(a)-estimates seen during training will be
driven towards 0 in proportion to c.

D. In the 10-armed testbed, if c is very large (i.e., c > 106), UCB may diverge

E. Don’t know.

Solution: The correct answer is A.

A. Since the rewards are random, the actions sequences will be random too.

B. The upper confidence values used to select actions will all be roughly the same in the long
run (we saw this in the in-class simulations). This means that they will not agree with q∗(a)
for sub-optimal actions a.

C. This is nonsense, as c controls an exploration/exploitation tradeof; it does not regularize the
estimate of Qt(a).

D. This is false; UCB is numerically very stable. Large values of c just increase exploration.

Question 9: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider the optimal control by direct collocation method applied to the Pendulum environment (in the

x =

[
θ

θ̇

]
parameterization). It is assumed the cost-function has the form:

∫ tF

0

[
1 +

(
x(τ)−

[
0
1

])⊤ [
0 0
0 1

](
x(τ)−

[
0
1

])]
dτ

Given an arbitrary initial position, which one of the following statements are true?

A. The control method will try to minimize the control signal u(t)

B. The control method will try to bring the system to the position θ = 0.

C. The control method will try to bring the system to a standstill θ̇ = 0.

D. The control method will try to minimize the time spend interacting with the system tF

E. Don’t know.

Solution: The correct answer is D.

The simplest way to solve the problem is to remember that cost-functions with a 1 will minimize the
time spend (c.f. the minimum-time swingup-task).

A slightly more elaborate solution can be obtained by multiplying out the cost function and integrate
the constant to get:

∫ tF

0

[
1 +

(
x(τ)−

[
0
1

])⊤ [
0 0
0 1

](
x(τ)−

[
0
1

])]
dτ = tF +

∫ tF

0

(θ̇(τ)− 1)2dτ

So the cost-function will minimize the time spend tF due to the first term.

A. The control signal is not part of the cost-function.

B. By multiplying out the inner matrix expression it is easy to see that θ does not enter into
the expression

C. The cost-function will actually favor a constant speed θ̇ = 1.

D. By integration we see the cost-function contains a term tF , so the time spend will be mini-
mized.
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Figure 3: An example gridworld environment. The location of Pacman indicates the initial state.

Part II: Conceptual questions

Question 10: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Suppose that Monte-Carlo prediction (using discount factor γ = 0.8) is applied to the Gridworld MDP
shown in fig. 3. The living reward is 0, and the dynamics is deterministic. The gridworld obey the usual
rules, meaning that the square boxes with numbers indicate exit squares, so that if Pacman lands in one
of them, only one action at = 0 (North) is available upon which the environment immediately terminates
with the reward given in the square.

(a) Suppose we apply first-visit Monte carlo prediction (see [SB18, Section 5.1]) to the problem and the
first episode consists of first going West, and then moving East to the goal, resulting in the actions:

a0 = West, a1 = East, a2 = East, a3 = East, a4 = East, a5 = East, a6 = North.

Assume the value function is initialized to zero. What is the updated value function at the starting

state, V (s0) ?

Solution: The answer is simply the return i.e. v(s0) = 2γ6 = 0.5243. All values can be seeen in
the figure below.

(b) Consider the same list of actions as in the previous questions, but assume that instead of first-visit
Monte carlo we had used every-visit Monte carlo instead. In this case, what is the value function

in the initial state V (s0) ?

Solution: Since the initial state is visisted twice, it will be updated twice by First-visit Monte-
Carlo. The two returns are

G1 = 0.5243, G2 = 2γ4

and new value will be the average of these returns, i.e. V (s0) = 0.6717. All values can be seeen in
the figure below.

Question 10 continues on the next page. . .
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Question 11: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider a control problem where a control signal u(t) ∈ R is applied to control a system with state
x(t) ∈ R and where the dynamics satisfy the following differential equation:

ẋ(t) = 2 sin(t+ x(t) + u(t)), t ≥ 0. (1)

In the following, we suppose that problem is Euler discretized using a time constant of ∆ = 0.25 to yield
states x0, x1, x2, · · · and control signals u0, u1, u2, . . . , each corresponding to the state of the system at
time step tk, starting at t0 = 0.

(a) Assume that x0 = 0, and a constant control signal of uk = −∆ is applied to the system. What is
the numerical value of x1 ?

Solution: We compute the Euler discretization as

xk+1 = xk + 2∆sin(k∆+ xk + uk) = xk +
1

2
sin((k − 1)∆ + xk)

This means that

x1 = 0 +
1

2
sin(−∆) = −1

2
sin

1

4
≈ −0.1237.

The expression with sin is also acceptable.

(b) Ignore the previous question and assume the control signal follows the rule uk = −2xk−∆k. When
evaluating the derivative term in PID control, we need to compute the discrete approximation of

the derivative defined as: xk+1−xk

∆ . Simplify this expression so that it only depends on xk.

Solution: Simple insertion of the previous result gives

xk+1 − xk

∆
=

2∆sin(k∆+ xk + uk)

∆
= 2 sin(−xk) = −2 sin(xk).

(c) Ignore the previous two questions and consider the continuous-time formulation of the system
defined in eq. (1). Suppose the system is initialized in x(0) = 0, and that we then apply a closed-
loop control signal u(t) = −x(t) to the system. Derive a simple, closed-form expression for the

control signal u(t) , and use it to compute the numerical value of u(π2 ) .

Solution: Inserting the policy gives us:

ẋ = 2 sin(t+ x+ u) = 2 sin(t+ x− x) = 2 sin(t).

Integrating tells us that x(t) = −2 cos(t)+c, and since x(0) = 0 we conclude that c = 2. Therefore

x(t) = 2− 2 cos(t)

and
u(t) = −x(t) = 2 cos(t)− 2.

In particular u(π2 ) = −2.

Question 12: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider a finite-horizon dynamical programming problem where the terminal cost is

gN (xN ) = exN − 1. (2)

(a) Suppose that the dynamics is fk(xk, uk, wk) = xk+uk+wk, and that when Dynamical Programing
is applied to this problem, it gives rise to the following update rule for JN :

JN−1(xN−1) = min
u∈AN−1(xN−1)

EwN−1

[
3u+ 2 + exN−1+u+wN−1

]
.

Question 12 continues on the next page. . .
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Use this information to determine gN−1 .

Solution: The DP update rule is:

JN−1(xN−1) = min
u∈AN−1(xN−1)

EwN−1
[gN−1(xk, uk, wk) + JN (fN−1(xk, uk, wk))]

= min
u∈AN−1(xN−1)

EwN−1

[
gN−1(xk, uk, wk)− 1 + efN−1(xk,uk,wk)

]
.

Simply matching terms, and keeping the −1 in mind, tells us that:

gN−1(xk, uk, wk) = 3uk + 3.

(b) Ignore the previous question and instead assume that, in addition to eq. (2), you are told that for
k = 0, . . . , N − 1:

fk(xk, uk, wk) = xk + uk + wk,

gk(xk, uk, wk) = xk,

pk(wk|xk, uk) =
e

e− 1
e−wk , and 0 ≤ wk ≤ 1

Ak(xk) = {0, 1},

Use this information1 to compute the numerical value of JN−1(2) .

Solution: All DP problems are variants of the same calculation. We get:

JN−1(xN−1 = 2) = min
u

E [gk(xk, uk, wk) + gN (f(xk, uk, wk)]

= min
u

E
[
2− 1 + e2+u+w

]
= min

u

(
1 + E

[
e2+u+w

])
= 1 +min

u

∫ 1

0

[
e

e− 1
e2+u

]
dw

= 1 +
e

e− 1
min
u

e2+u = 1 +
e

e− 1
e2 = 1 +

e3

e− 1
.

This is approximately equal to JN−1(2) ≈ 12.7.

(c) Assume fk, gk and wk are as described in the previous question. Assume that the state space at
k = N − 1 (i.e., the states the system can be in at planning step N − 1) is comprised of just the
unit interval:

SN−1 = [0; 1].

What are the possible states the system can be in at the next time step N? I.e., what is the smallest
possible state space, SN , compatible with this information?

Solution: This amounts to determining what states the system can be in at the next step. If
u = 0 this is

xN−1 + 0 + w

where xN−1, w ∈ [0; 1]. Clearly this consist of [0; 2]. In the other case we have

xN−1 + 1 + w ∈ [1; 3]

The smallest possible state space is therefore SN = [0, 3].

1The density of the random noise terms wk is normalized since
∫ 1
0 e−wdw = 1− 1

e
.
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Part III: Programming questions

Question 13: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To solve this question, you should edit the file irlc/exam/exam2024spring/question_inventory.py . This

problem is about a variant of the inventory control problem discussed in [Her25, section 5.1.2]. We
consider an inventory control problem that represents a store which sells bridal gowns such that xk

denotes the number of bridal gowns in stock at planning round k. The original inventory control model
and the dynamical programming algorithm is included in the exam folder.

The bridal gown store problem is equivalent to the inventory control problem on a horizon of N with
two changes:

• There are m actions, Ak(xk) = {0, 1, . . . ,m− 1}.
• Customers can buy from w = 0 to w = m− 1 bridal gowns, and the distribution of the number of
bridal gowns customers buy each day is:

pW (wk = i | xk, uk) =
1

m
, i = 0, . . . ,m− 1.

Note that the state spaces, cost functions, and the dynamics are the same as in the inventory control
problem.

(a) Complete def a_get_cost(N: int, m: int, x0 : int) : This function is given a value of N , m and a starting
state x0. It should then compute the optimal cost when starting in state x0 and planning on a
horizon of N , i.e. J∗(x0), as an float .

(b) Complete def b_sale(N : int, m : int, x0 : int) : Suppose that in each planning round, the store owner
has an additional action uk = sale corresponding to holding a sale. When the store owner holds a
sale, she orders a number of gowns, sell them at a reduces price, and is guaranteed to end up with
an empty inventory. Concretely this implies two changes:

xk+1 = fk(xk, uk, wk) =

{
0 If there is a sale

usual value otherwise
, gk(xk, uk, wk) =

{
3
4 (m− wk) If there is a sale

usual value otherwise.

As in the previous problem, the function should accept N , m, and x0 as inputs and return expected
cost J∗(x0) as a float . Hint: Account for the sale-action as an extra element in the action space.

Solution:

The solution can be found in this directory as a .py file.
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Question 14: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To solve this question, you should edit the file irlc/exam/exam2024spring/question_bill_mdp.py . Bill is
renting an appartment, and is now looking into how he can best make decisions to maximize his profit
in each subsequent year t = 0, 1, 2, . . . .

This decision problem is formulated as a MDP, where Bills objective is the usual MDP objective of
maximizing the expected γ-discounted return (we assume that 0 < γ < 1). Specifically, the MDP is
defined as follows:

• There are two states and the problem never terminates.

• One state corresponds to Bill owning the apartment. There are then two actions available to him:

– He can move in with his parents and AirBnB his apartment. This is guaranteed to result in a
reward of Rt+1 = rairbnb (for instance rairbnb = 0.01)

– He can gamble the lease to the apartment at the casino. With probability pw = 0.45, he will
gain two units of money Rt+1 = 2, and with probability 1− pw, he will permanently loose the
apartment.

• The other state corresponds to Bill having lost his apartment.

– Bill now lives permanently with his parents and will always get a reward of Rt+1 = 0.

• Bill starts in the state corresponding to owning the apartment, s0

(a) Complete def a_always_airbnb(r_airbnb : float, gamma : float) : Assume Bill play economically safe and
always decide to move in with his parents. In each round he therefore always get an AirBnb income
of rairbnb (corresponding to r_airbnb ). For a given discount factor γ (corresponding to gamma ),

the function should compute the expected future γ-discounted return vπ(s0) when Bill follows this
policy. The function should return a single number.

(b) Complete def b_random_decisions(r_airbnb : float, gamma : float) : Bill is unhappy with living with his
parents and acts a bit erratic. Bill therefore follows the random policy π where, as long as he owns
the apartment, he will gamble with a probability of 0.5 and otherwise AirBnb the apartment. The
function should compute vπ(s0) when Bill follows this policy for different values of γ and rairbnb.
The function should return a single number.

(c) Complete def c_is_it_better_to_gamble(r_airbnb : float, gamma : float) : This function should return True

when the optimal policy, computed using the given value of rairbnb and γ, dictates that Bill should
gamble and otherwise False .

Solution:

The solution can be found in this directory as a .py file.

Question 15: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To solve this question, you should edit the file irlc/exam/exam2024spring/question_control.py . In this

problem, we will consider a control task with one-dimensional state and action vectors, x(t), u(t) ∈ R.
The dynamics obey the 1-d differential equation:

ẋ = f(x, u) = −eu−x2

.

and there are no constraints on the system.

(a) Complete def a_xdot(x : float, a : float) : Assume that a closed loop policy of the form u(t) = ax(t)2

is applied to the system. Given the state x and a value for a, the function should return the rate
of change in the state ẋ as a float .

(b) Complete def b_rk4_simulate(u0 : float, tF : float) : Suppose that the system is initialized in x(0) = 0
and a constant policy u(t) = u0 (corresponding to u0 ) is applied to the system until a time tF
(corresponding to tF ). The function should return the end-state x(tF ), represented as a float ,
computed using RK4 integration as recommended in the course material.

Question 15 continues on the next page. . .
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Solution:

The solution can be found in this directory as a .py file.

Question 15 continues on the next page. . .
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