
Midterm test A 02465 March 4th, 2023

Written examination date: March 4th, 2023
Course title: Introduction to reinforcement learning and control
Course number: 02465
Aids allowed: All aids allowed
Exam duration: 4 hours

Weighting: The exam is divided into 3 parts:
• Multiple-Choice questions
• Conceptual questions
• Programming questions

The overall scores of each part contribute roughly equally towards the overall result. Each
question in each part contribute equally towards the score of that part.
Part I: Questions 1-4 are multiple choice. The score of a correct answer is 3 points. The
score of an incorrect answer is −1 points. The score of option E or blank is 0 points.
Part II and part III: Each completed sub-task contribute towards your score.
Preparing your handin: The three parts are prepared as follows:
Part I: Edit the file irlc/exam/midterm2023a/multiple_choice_answers.py . Don’t include calcula-

tions. Only answer with 'A' , 'B' , 'C' , 'D' , 'E' .
Part II: Create a PDF file with your answers and justifications.
Part III: Program your answer in the .py -files indicated in the question and run

irlc/exam/midterm2023a/midterm2023a_tests_grade.py to generate your .token -file.
Handing in: To hand in, you should upload the files:

• The irlc/exam/midterm2023a/multiple_choice_answers.py -file with your answer to part I

• The .pdf -file with your answers to part II

• The .token -file with your answers to part III

• The irlc/exam/midterm2023a/question_dp.py source file containing your solution

• The irlc/exam/midterm2023a/question_pid.py source file containing your solution

Note on part II: The main quantities asked for are highlighted as f(x) . Answer

unambigiously, concisely, and if applicable with algebraic simplifications. Your final result

must be clearly indicated at the end of your answer: f(x) = 3 sin(x) . To get credit, you

must state the relevant theory and equations, and all relevant calculations must be included.
Credit is not given for answers with missing or erroneous justifications.
Note on part III: To get started, move the folder irlc/exam/midterm2023a from the .zip file
to the corresponding location in your existing exercise directory. The .py source files must
be reproducible and readable so that someone else can run and fully understand your
solution. You can freely use the irlc -toolbox (including solutions) and the packages we
have used in the course, but you must include additional code you write during the exam
or have prepared beforehand in the source files listed above. The source files must not be
renamed. The .token file contains your results and must be up to date with your source files,
i.e., generate it just prior to handin. In the case they differ, the .token file takes precedence.
Credit is given for correct implementations defined by the problem description. The points
in the .token file name is computed from the public tests, and might not correspond to
overall correctness.
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Part I: Multiple-Choice

Question 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which one of the following options are correct?

A. A PID controller is an example of an open-loop controller

B. The integral parameter Ki must always be positive Ki ≥ 0

C. A PID controller is a model-based control method

D. We can build a PID controller without specifying a cost-function

E. Don’t know.

Solution: The correct answer is D.

A. PID control is not open loop since it depends on the state

B. The sign of the integral term (or any of the other terms) depends on the definition of u

C. The PID controller does not require a model.

D. A PID controller does not need a model or a cost function.

Question 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which one of the following options are correct?

A. Control problems where the continuous-time dynamics takes the form ẍ = aẋ+ bx+ c+u falls
outside the scope of the linear quadratic regulator

B. The linear-quadratic regulartor is an example of model-free control

C. In a linear-quadratic control problem of the form xk+1 = Axk + Buk, the matrices A and B
must both be square.

D. The cost-functions suitable for a linear-quadratic regulator can potentially produce negative
values

E. Don’t know.

Solution: The correct answer is D.

A. The problem is linear if we use the state-representation x =

[
x
ẋ

]
B. The linear-quadratic regulator explicitly plans using a model of the dynamics and cost (hence

the name, linear-quadratic)

C. A is square but B is only square when xk and uk have the same dimension.

D. Since the cost-function allows a constant term it can easily be negative.

Question 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Which one of the following options are correct?

A. Euler-discretization is necesary if we want to apply LQR to a general continuous-time control
problem.

B. Euler-discretization is exact when both the dynamics and cost-function for the continuous-time
control problem are linear

C. To apply Exponential integration to a control problem of the form ẋ = Ax+Bu, it is necesary
that A is invertible

Question 3 continues on the next page. . .
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D. Euler-discretization can be applied to time-dependent control problems

E. Don’t know.

Solution: The correct answer is D.

A. Finite-horizon LQR can be applied to any problem with linear dynamics xk+1 = Axk +Buk

without any reference to where these matrices come from (for instance, they can arise from
exponential integration).

B. This is not true since; c.f. the Harmonic Oscillator.

C. A does not need to be invertible. In fact A is not invertible in the case ẍ(t) = u(t) (see
exercises to lecture 4).

D. Euler-discretization is formulated for time-dependent control problems. Recall that the up-
date is just xk+1 = xk +∆f(xk, uk, tk).
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Question 4: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Suppose the Dynamical Programming algorithm is applied to a problem where the following is known:

• N = 10

• The size of the action spaces are |Ak(xk)| = 4

• The size of the states spaces are |S0| = 1, |SN | = 2 and otherwise |Sk| = 10

• There are exactly two random noise disturbances, w = 0 and w = 1, available in any state/action
combination:

PW (w = 0|x, u) = PW (w = 1|xk, uk) =
1

2
.

How many times does the dynamical programming algorithm need to evaluate fk in order to find the
optimal policy?

A. 736

B. 744

C. 730

D. 728

E. Don’t know.

Solution: The correct answer is D.

At each time step k = 0, . . . , N − 1, the total number of evaluations of fk is:

|Sk| × actions× disturbances

The total is therefore (1 + (N − 1)× 10)(4× 2) = 728
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Part II: Conceptual questions

Question 5: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider a control problem where a control signal u(t) ∈ R is applied to a variable w(t) ∈ R. The
variable measures an angle, and it satisfies the following differential equation:

ẅ = cos (u+ w) (1)

We introduce a state x(t) =

[
w(t)
ẇ(t)

]
which allows us to re-write the system in the usual way as a first-order

differential equation:
ẋ(t) = f(x(t), u(t)).

The problem is then discretized using Euler discretization with a time step of ∆ = 0.2 to give states
x0,x1,x2, · · · . Our goal is to bring the system to an angle w = π

2 (where it should remain), corresponding

to the goal state x∗ =

[
π
2
0

]
.

(a) If we succeed at bringing the system to the target state at time t′, how much control u(t′) do we

subsequently need to apply to keep the system at w(t) = π
2 ? Provide an argument for your answer

(Hint: Consider what it would mean for the system to stand still in terms of x(t))

Solution: At the goal state, the derivative of x is

[
0

cos
(
π
2 + u(t)

)]. So assuming we don’t apply

any control the derivative is 0 and the system stays put. Therefore u(t′) = 0

(b) Assume that the initial conditions at the starting time t0 = 0 is w(t = 0) = ẇ(t = 0) = 0 and that
no control signal is applied to the system (u(t) = 0, t ≥ 0). According to Euler discretization, what
is the value of w at time tk = ∆?

Solution: Euler discretization is:

xk+1 = xk +∆

[
x1

cos(x1 + uk)

]
.

This means that for k = 0 we get

xk+1 = xk +∆

[
x1

cos(0)

]
=

[
0
∆

]
so that w0 = 0

(c) Continuing the previous problem and still assuming no control signal is applied. According to Euler
discretization, what is the value of w at time tk = 2∆?

Solution: Continuing the above, at k = 1 we get:

xk+1 =

[
0
∆

]
+∆

[
∆

cos(0)

]
=

[
∆2

2∆

]
I.e. w1 = ∆2 = 0.04.

Question 6: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider the dynamical programming setting where we plan over a horizon N > 0. We consider a
problem where:

• The terminal cost function is
gN (xN ) = x2

N

Question 6 continues on the next page. . .
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• For all k = 0, . . . , N − 1 the dynamics is fk(x, u, w) = ax+ u− λw

• The noise disturbances are normally distributed with variance σ2:

PW (w|x, u) = N (w | µ = 0, σ2 = 1)

• The states and actions are real numbers Sk = Ak(xk) = R.
• The non-terminal costs are only affected by u, gk(x, u, w) = u2.

Thus, the relevant parameters of the problem are a and λ. We are concerned with optimal control.

(a) Although the problem has been formulated as being about dynamical programming, note that the
structure of the problem is that of a 1-dimensional LQR model. In the case where λ = 3, derive

the expected future cost E[gN (xN )|xN−1 = 0, uN−1 = 1] if we at time step k = N − 1 are in state

state xN−1 = 0 and take action u = 1

Solution: The future cost is given by

E[x2
N ] = EN (w|0,1)

[
(ax+ u− λw)2

]
= E

[
(1 + λw)2

]
= 1 + λ2E

[
w2

]
+ E [2λw] = 1 + λ2

so the answer is E[gN (xN )|xN−1 = 0, uN−1 = 1] = 10

(b) Derive an analytical expression for the optimal policy µk(xk) in time step k = N − 1

Solution: Since it is known from the lecture notes that the optimal policy is not affected by noise
we can set λ = 0. To proceed, we can either insert and optimize or run the LQR algorithm for 1
step. Using the LQR algorithm we get that:

VN = QN = 2

Rk = 2 = R

Ak = a

Bk = 1

LN−1 = −(Rk +BT
k Vk+1Bk)

−1(BT
k Vk+1Ak) = − aQN

R+QN
= − 2a

2 + 2
= −a

2

uN−1 = LN−1x

Therefore µN−1(x) = −a
2x
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Part III: Programming questions

Question 7: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To solve this question, you should edit the file irlc/exam/midterm2023a/question_dp.py . This problem

exclusively focuses on the inventory control problem discussed in [Her25, section 5.1.2]. The inventory
control model and the dynamical programming algorithm is included in the exam folder.

The dynamical programming algorithm determines the optimal cost-to-go function J∗
k for a dynamical

programming problem as a list of dictionaries. We are interested in building a variant of the DP algorithm
which computes the expected tail cost of a policy Jπ,k(xk), also represented as a list of dictionaries.

• The problem itself will be represented as a DPModel instance

• The policy π = (µ0, µ1, . . . , µN−1) is represented in the usual way as a list of length N − 1. Each
element of this list corresponds to a µk and is represented as a dictionary which maps states to
actions

(a) Complete def a_expected_items_next_day(x : int, u : int) : This function is given the starting state x0

and the first action u0, and computes the expected value of the next state x1:

E [x1|x0, u0] .

I.e., the function computes the expected amount of goods in the warehouse on day 1 given infor-
mation about how much was in the warehouse on day 0 and how much we ordered u0. Hint: Recall
that x1 = f0(x0, u0, w0) where w0 is the random noise disturbance at time step k = 0.

(b) Complete def b_evaluate_policy(pi : list, x0 : int) : This function is given a policy π in the before-

mentioned format and a starting state x0, compute the expected tail cost Jπ,0(x0) when starting in
state x0 at time k = 0 and subsequently taking actions according to π. Hint: You may find [Her25,
section 6.3.1] to be of help.

Solution:

The solution can be found in this directory as a .py file.
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Question 8: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To solve this question, you should edit the file irlc/exam/midterm2023a/question_pid.py . Your task is to
implement a discrete PID control in a setting where you are given a sequence of states x0, . . . , xN−1,
and have to compute the next action uN−1. To avoid boundary issues, you can assume that N ≥ 4. The
discretization time is fixed at ∆ = 1.

The functions below all accepts a sequence of states xs , represented as a list of numbers, and must
compute the next action, represented as a float .

(a) Complete def a_pid_Kp(xs : list, xstar : float, Kp : float) : Implement PID control to the sequence-of-
states setting. The function is given a sequence of N states xs and a value of the proportionality
term Kp, and should compute the next action. The parameter xstar corresponds to a target state
x∗, but in this problem we assume that x∗ = Ki = Kd = 0. The function should return a single
real number corresponding to the next action uN−1.

(b) Complete def b_pid_full(xs : list, xstar : float, Kp : float, Ki : float, Kd : float) : This function is sim-
ilar to the one you implemented in the previous question, but should also take the derivative term
Kd, integral term Ki and target x∗ into account.

(c) Complete def c_pid_stable(xs : list, xstar : float, Kp : float, Ki : float, Kd : float) : This problem as-
sumes that the states xk are noisy and that we are particularly concerned about how this affects
the derivative term in the PID controller.

Recall the contribution from the derivative term at time step k to the PID controller has the form:

Kp · {· · · }+Kde
′
k +Ki · {· · · }, where e′k =

e(tk)− e(tk −∆)

∆
.

I.e., the term e′k corresponds to the estimated derivative of the error. You should implement a
variant of PID control where this term has been replaced with the average estimate over the last
two time steps. The contribution from the Kd term should therefore be modified to be:

Kd

e′k−1 + e′k
2

.

Solution:

The solution can be found in this directory as a .py file.

Question 8 continues on the next page. . .
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