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In Chapter 5 we described the linear regression model, when the outcome (Y) is
a linear function of one regressor (x). It is natural to extend this model to include
more than one regressor, in general we can write

Yj:,BO+,le1,i+"'+:BPxP/i+si’ SiNN(O,U'z), (6'1)

where as usual we assume that the residuals (¢;) are independent and identi-
cally distributed (i.i.d.) normal random variables with zero mean and some
unknown variance (¢). Note, that this is the assumption for all random vari-
able error terms in models presented in this chapter, however it is not noted for
every model.

The model in Equation (6-1) is referred to as the General Linear Model (GLM),
and is closely related to the ANOVA covered in a later chapter. As we will see
in Section 6.2, we can also use the approach to approximate non-linear functions
of the regressors, i.e.

Y; = f(x;) + ¢, & ~ N(0,0%). (6-2)

The optimal set of parameters for the multiple linear regression model is found
by minimising the residual sum of squares

n

RSS(Bo,---,Bp) = Y [Yi— (Bo + Bixwi + - + Bpxpi)]°, (6-3)
=1

where 71 is the number of observations. The general problem is illustrated in
Figure 6.1, where the black dots represent the observations (y;), the blue and red
lines represent errors (e;) (the ones we minimize), and the surface represented
by the grey lines is the optimal estimate (with p = 2)

9; = Bo+ Bix1i + Baxas, (6-4)
or
Y; =1 +e, (6-5)

again we put a “hat” on the parameters to emphasize that we are dealing with
parameter estimates (or estimators), as a result of minimising Equation (6-3)
with respect to By, . .., Bp-

Let’s have a look at a small example:
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Figure 6.1: Conceptual plot for the multiple linear regression problem (red lines,
e; > 0, blue lines (e; < 0).
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lll Example 6.1

The car manufacture in Example 5.1 in Chapter 5 constructed a linear model for
fuel consumption as a function of speed, now a residual analysis revealed that the
residuals were not independent of the fitted values and therefore the model should
be extended. It is realized that the fuel consumption is a function of wind speed as
well as the speed of the car, and a new model could be formulated as

Yi = o+ Prx1i + Poxoi + € (6-6)

where x1; is the speed, and x,; is the wind speed (relative to the car). Another
possibility is that the model should in fact not be linear in the speed, but rather
quadratic

Y = Bo+ Bix1i + Poxi; + e (6-7)
= Bo + P1x1,; + Pax2,i + €, (6-8)

where x; ; is now the squared speed. Both models ((6-6) and (6-7)) are linear in the
parameters (Bo, B1, B2)-

The example above illustrate that linearity refers to linearity in the parameters,
not the regressors. E.g. the model

Y; = Bo + B2log(x;) + ¢, (6-9)
is a linear model, while
Y; = Bo + log(x; + B2) + ¢, (6-10)

is not a linear model.

6.1 Parameter estimation

Just as in the case of simple linear regression the optimal parameters are the
parameters that minimize the residual sum of squares (RSS), this is equivalent
to equating the partial derivatives of RSS (Equation (6-3)) with zero, i.e.

dRSS

22 -0, j=01,...,p, (6-11)
9, j p
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which will give us p + 1 equations (the partial derivatives) in p + 1 unknowns
(the parameters)

2y [yi— (Bo+Brxri+ -+ Bpxpi)] =0, (6-12)
=1

1

.[\'\%:

N
Il
—_

lyi — (Bo+ Bix1i+ -+ + Bpxpi)x1i] =0, (6-13)

n
2Y [yi— (Bo+ Pixri+ -+ Bpxpi)xyi] =0, (6-14)
i—1

the Equations (6-12)-(6-14) are referred to as the normal equations, and as we
can see these are a system of linear equations and thus best solved by methods
of linear algebra. The matrix formulation is covered in Section 6.6, but for now
we will just assume that R is able to solve the normal equations and give the
correct parameter estimates, standard errors for the parameter estimates, etc.

When the ¢;’s are independent identically normally distributed, we can con-
struct tests for the individual parameters, assuming we know the parameter
estimates and their standard errors:

ll Theorem 6.2 Hypothesis tests and confidence intervals

Suppose the we are given parameter estimates (B, ..., Bp) and their corre-
sponding standard errors (OB, ?75p), then under the null hypothesis

Ho;:  Bi = Po, (6-15)

the t-statistic

A

i — M, (6-16)

A

U

will follow the t-distribution with n — (p + 1) degrees of freedom, and hy-
pothesis testing and confidence intervals should be based on this distribu-
tion. Further, a central estimate for the residual variance is

&ZZRSS(BO,...,BP)
n—(p+1)

(6-17)

The interpretation of multiple linear regression in R is illustrated in the follow-
ing example:
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lll Example 6.3

The data used for Figure 6.1 is given in the table below

X1
X2
y

X1
X2
Y

0.083
0.625
0.156

0.772
0.821
1.574

0.409
0.604
1.234

0.857
0.308
0.349

0.515
0.077
0.490

0.758
0.440
1.287

We assume the model

0.397
0.414
1.649

0.850
0.865
1.709

0.223
0.343
0.500

0.409
0.111
0.323

0.292
0.202
0.395

0.055
0.970
1.201

Y; = Bo + Bix1,i + Baxo,i + &,

0.584
0.840
1.452

0.578
0.192
1.210

0.491
0.266
0.416

0.745
0.939
1.787

gi ~ N(0,07).

In order to estimate parameters in R we would write:

## Read data

x1 <- c(O.
0.
0.
x2 <- c(0.
0.
0.

083,
280,
886,
625,
385,
149,

O O O O O O

.409, 0.515, 0.397,
.772, 0.857,
.031)
.604, 0.077,
.821, 0.308,
.318)

0.758,

0.414,
0.440,

0.223,
0.850,

0.343,
0.865,

0.292,
0.409,

0.202,
0.111,

0.584,
0.055,

0.840,
0.970,

0.923
0.831
1.390

0.886
0.149
0.591

0.491,
0.578,

0.266,
0.192,

0.280
0.385
0.234

0.031

0.318
0.110

(6-18)

0.923,
0.745,

0.831,
0.939,

y <- c(0.156, 1.234, 0.490, 1.649, 0.500, 0.395, 1.452, 0.416, 1.390,
.287, 1.709, 0.323,

0.234,

0.591, 0.110)

1.574, 0.349, 1

1.201,

1.210,

1.787,
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## Parameter estimation
fit <- Im(y = x1 + x2)

## Summary of fit (parameter estimates, standard error, p-values, etc.)
summary (fit)

Call:
lm(formula = y ~ x1 + x2)

Residuals:
Min 1Q Median 3Q Max
-0.6242 -0.2040 0.0280 0.0957 0.9251

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.118 0.212 -0.56 0.58571
x1 0.827 0.304 2.72 0.01459 *
x2 1.239 0.293 4.24 0.00056 **x*
Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’x> 0.05 >.” 0.1 > > 1

Residual standard error: 0.378 on 17 degrees of freedom
Multiple R-squared: 0.632,Adjusted R-squared: 0.589
F-statistic: 14.6 on 2 and 17 DF, p-value: 0.000203

The interpretation of the R output is exactly the same as in the simple linear re-
gression. The first column gives the parameter estimates (B0, 81, B2), second column
gives the standard error of the parameter estimates (0,, 03,, 03,), third column gives
the t-statistics for the standard hypothesis Hy,; : f; = 0, and finally the last column
gives the p-value for the two-sided alternative. We can therefore conclude that the
effect of x; and x; are both significant on a 5% confidence level.
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lll Method 6.4 Level « t-tests for parameters

1. Formulate the null hypothesis: Hy; : Bi = Py, and the alternative hy-
pothesis Hl,i : ﬁi 75 ﬁO,i

2. Compute the test statistic tops g, = ﬁl;—ﬁﬁm

3. Compute the evidence against the null hypothesis

p-value; = 2P(T > [tops ;) (6-19)

4. If the p-value; < « reject Hy;, otherwise accept Hy ;

In many situations we will be more interested in quantifying the uncertainty of
the parameter estimates rather than testing a specific hypothesis. This is usually
given in the form of confidence intervals for the parameters:

lll Method 6.5 Parameter confidence intervals

1 — «) confidence interval for B; is given b
g y
Bitti_as2 0p, (6-20)

where t;_, /5 is the (1 — a/2)-quantile of a t-distribution with n — (p + 1)
degrees of freedom.

I Remark 6.6 (On finding j3; and o, in methods 6.4 and 6.5)

In Chapter 5 we were able to formulate the exact formulas for 3; and %i’ in
a multiple linear regression setting we simply use R (summary (fit)), to find
these values.

The explicit formulas are however given in the matrix formulation of the
linear regression problem in Section 6.6.




Chapter 6 ||| 6.1 PARAMETER ESTIMATION 8

lll Example 6.7

For our example the 95% confidence intervals become (t;_, /> = 2.110)

Ig, = —0.118 +2.110 - 0.212, (6-21)
Is, = 0.827 +2.110 - 0.304, (6-22)
Ig, = 1.239 +2.110 - 0.293, (6-23)

or in R (for Bo):
-0.118+c(-1,1)*qt(0.975,df=17)*0.212

[1] -0.5653 0.3293

or directly in R (for Bo, B1, and B>):

confint(fit, level = 0.95)

2.5 % 97.5 %
(Intercept) -0.5643 0.329
x1 0.1854 1.470
x2 0.6220 1.857

The examples above illustrates how we can construct confidence intervals for
the parameters and test hypotheses without having to implement the actual
estimation ourselves.

6.1.1 Confidence and prediction intervals for the line

Just as for the simple linear regression model we will often be interested in pre-
diction of future outcome of an experiment, and as usual we will be interested
in quantifying the uncertainty of such an experiment. The expected value of a
new experiment (with X1 = X1 new, - -+, Xp = Xpnew) i8

]?new = ,BO + lel,new + ...+ Bpxp,new- (6-24)

In order to quantify the uncertainty of this estimate we need to calculate the
variance of Jnew, in Section 5.3 we saw that this variance is a function of: 1) the
variance of the parameters, 2) the covariance between the parameters, and 3)
Xnew- This is also true in the multiple linear regression case, except that xpew is
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now a vector and we need to account for pairwise covariance between all pa-
rameter estimators. This analysis is most elegantly done with matrix formula-
tion and is covered in Section 6.6. We can however do this in R without dealing
with the covariances explicitly.

This is illustrated in the following example:

lll Example 6.8

With reference to Example 6.3 suppose we want to predict the expected value of
Y at (X1 new, X2new) = (0.5,0.5) and at (X1 new, X2new) = (1,1), we would also like
to know the standard error of the prediction and further the confidence and the
prediction intervals. The standard error of the prediction can be calculated in R by:

Xnew <- data.frame(xl = c(0.5, 1), x2 = c(0.5, 1))

pred <- predict(fit, newdata = Xnew, se = TRUE)
pred

$fit
1 2
0.9157 1.9491

$se.fit
1 2
0.08477 0.21426

$df
(1] 17

$residual.scale
[1] 0.3784

The data-frame “Xnew” is the points where we want to predict the outcome, the ob-
ject “pred” has the fitted values ($£it) at the points in “Xnew”, the standard error for
the predictions ($se.fit), the degrees of freedom ($df) in the residual (the one we
use for f-test), and ($residual.scale) the estimate of the error standard deviation

@).

Notice that the standard error for fnew is much larger for the point (X1 new, X2.new) =
(1,1) than for the point (X1 new, X2,new) = (0.5,0.5), this is because the (1,1) point is
far from the average of the regressors, while the point (0.5,0.5) is close to the mean
value of the regressors.
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Now, we are actually able to calculate confidence and prediction intervals for the
two points, the confidence intervals become

Cl; = 0.9157 & t;_,/» - 0.08477, (6-25)
Cl, = 1.9491 + +_,» - 0.21426, (6-26)

and the prediction intervals become (add the variance of Yiew and 5?)

PI; = 09157 + +;_, > - v/0.084772 + 0.37842, (6-27)
Pl =1.9491 + ;_, - 1/0.214262 + 0.37842, (6-28)

where t;_, /, is obtained from a t-distribution with 17 degrees of freedom.

Or we can calculate the confidence and prediction intervals directly in R (with con-
fidence level « = 0.05):

## Confidence interval

predict(fit, newdata = Xnew, interval = "confidence", level = 0.95)
fit lwr upr

1 0.9157 0.7369 1.095

2 1.9491 1.4971 2.401

## Prediction interval

predict(fit, newdata = Xnew, interval = "prediction", level = 0.95)
fit lwr upr

1 0.9157 0.09759 1.734
2 1.9491 1.03165 2.867

We saw in the example above that the standard error for the fit is large when
we are far from the centre of mass for the regressors, this is illustrated in Figure
6.2.
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Figure 6.2: Standard error for Jnew (blue surface) and standard error for ynew
(red surface).
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lll Method 6.9 Intervals for the line (by R)

The (1-) confidence and prediction intervals for the line BO - Bl X1 new +
s ,Bpxp,new are calculated in R by

predict(fit, newdata=Xnew, interval="confidence", level=1-alpha)

predict(fit, newdata=Xnew, interval="prediction", level=1-alpha)

|l Remark 6.10

Explicit formulas for confidence and prediction intervals are given in Section
6.6.

6.2 Curvilinear regression

Suppose we are given pairs of values of x and y and there seems to be informa-
tion in x about y, but the relation is clearly non-linear

Yi = f(xi) +e, &~N(0,0?), (6-29)

and the non-linear function f(x) is unknown to us. The methods we have dis-
cussed don’t apply for non-linear functions, and even if we could do non-linear
regression we would not know which function to insert. We do however know
from elementary calculus that any function can be approximated by its Taylor
series

an () (o
f(x)%f(O)Jrf’(O)~x+fT()x2+~~+fp—!()xp, (6-30)
now replace the Taylor series coefficients (@) by B; and insert (6-30) in

(6-29) to get
Yy = Bot Brx+ fard 44 B e 631)
:ﬁo+,31X1+[32X2+"'+,Bpxr;+€i,

where x; = x/, we refer to this method as curvilinear regression. The method is
illustrated in the following example:
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lll Example 6.11 Simulation of non-linear model

We simulate the following model
Y; = sin(7x;) + ¢, & ~ N(0,0.1%), (6-32)
with x € [0,1] by:

n <- 200
x <- runif(n)
y <- sin(pi*x) + rnorm(n,sd=0.1)

Y; is a non-linear function of x but lets try to estimate parameters in the simple linear
regression model

Y; = Bo+Bixi +ei, &~ N(0,0%), (6-33)

and find the 95% confidence interval for the parameters:

fitl <- Im(y ~ x)
confint (fit1)

2.5 % 97.5 %
(Intercept) 0.5737 0.7544
X -0.1960 0.1251

We see that the 95% confidence interval for §; covers zero, and we can therefore
not reject the null hypothesis that ; is zero. Now include a quadratic term in x; to
approximate the non-linear function by the model

Y; = Bo + B1xi + B2x? +e;, & ~ N(0,0°), (6-34)

x1 <- x; x2 <- x72
fit2 <- Im(y = x1 + x2)
confint (fit2)

2.5 % 97.5 %
(Intercept) -0.0906 -0.005303
x1 3.9858 4.381327
x2 -4.3823 -4.001747

Now we see that all parameters are significantly different from zero on a 5% confi-
dence level. The plot below shows the residuals for the two models as a function of
the fitted values:
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It is clear that including the second order term removed most, if not all, systematic
dependence in the residuals. Also looking at the fitted values together with the
actual values shows that we have a much better model when including the second
order term (red line):

Yy
00 02 04 06 08 1.0

|l Remark 6.12

In general one should be careful when extrapolation models into areas
where there is no data, and this is in particular true when we use curvilinear
regression.
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6.3 Collinearity

In statistics collinearity refers to situations where the sample correlation be-
tween the independent variables is high. If this is the case we should be careful
with interpretation of parameter estimates, and often we should actually reduce
the model. Now consider the model

yi = Bo+ Bix1 + Poxa +¢;, & ~ N(O, 02)/ (6-35)

and assume that the sample correlation between x; and x; is exactly equal 1,
this implies that we can write x, = a + bxy, inserting in (6-35) gives

yi = Bo+ P1x1 + Ba(a+bxy) +e; (6-36)
= Bo + Baa + (B1 + P2b)x1 + ¢, (6-37)

which shows that we can only identify B + B2a and (B1 + B2b), so the model is
essentially a simple linear regression model. It could also have been the other
way around, i.e. x; = a + bxp, and thus it seems that it is not possible to dis-
tinguish between x; and x;. In real life application the correlation between the
regressors is rarely 1, but rather close to 1 and we need to handle this case as
well. In actual practice a simple way to handle this is, by adding or removing
one parameter at the time. Other procedures exist, e.g. using the average of the
regressors, or using principle component regression, we will not discuss these
approaches further here.

A small example illustrates the principle:

Il Example 6.13  Simulation

Consider the model
Y; = Bo + B1x1 + Baxa + &, & ~ N(0,0%), (6-38)
with data generated from the following R-code:

n <- 100

x1 <- runif(n)

x2 <- x1 + rnorm(n, sd=0.01)

y <- x1 + x2 + rnorm(n, sd=0.5)

plot(xl, y, pch=19, cex=0.5, xlab=expression(x[1]))
plot(x2, y, pch=19, cex=0.5, xlab=expression(x[2]))
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Clearly, both x1 and x, contain information about y, but our usual linear regression
gives:

confint (lm(y ~ x1 + x2))

2.5 % 97.5 %
(Intercept) -0.3453 0.07124
x1 -14.9270 5.98682
x2 -3.6745 17.20468

we see that none of the parameters are significant (on a 5% level), but if we remove
x1 (this is the one with the highest p-value) from the model we get:

summary (lm(y ~ x2))

Call:
Im(formula = y ~ x2)

Residuals:
Min 1Q Median 3Q Max
-1.2229 -0.3025 0.0025 0.2641 1.7649

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.140 0.105 -1.33 0.19
x2 2.305 0.194 11.86 <2e-16 **x
Signif. codes: O ’#*%%’ 0.001 ’*%’ 0.01 ’%’ 0.05 .7 0.1 * ’ 1

Residual standard error: 0.502 on 98 degrees of freedom
Multiple R-squared: 0.589,Adjusted R-squared: 0.585
F-statistic: 141 on 1 and 98 DF, p-value: <2e-16
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and the slope is now highly significant.

The lesson learned from the example above is that we should always try to
reduce the model before concluding that individual parameters are zero. Model
development is a partly manual process, where the end result might depend on
the selection strategy. The usual strategies are: backward selection, where we start
by the most complicated model we can think of and remove one term at a time
(this is what we did in the example above), and forward selection where we start
by a simple model and include new terms one by one.

lll Remark 6.14 Interpretation of parameters

In general we can interpret the parameters of a multiple linear regression
model as the effect of the variable given the other variables. E.g. f; is the
effect of x; when we have accounted for other effects (x;, i # j). This inter-
pretation is however problematic when we have strong collinearity, because
the true effects are hidden by the correlation.

An additional comment on the interpretation of parameters in the example
above is: since the data is simulated, we know that the true parameters are
B1 = B2 = 1. In the full model we got 1 ~ —4.5 and B, ~ 6.75. Both of these
numbers are clearly completely off, the net effect is however f; + B, ~ 2.25
(because x; ~ x7). In the reduced model we got ,Bz = 2.3, which is of course
also wrong, but nearly the same level, and only holds because x; ~ x;.

6.4 Residual analysis

Just as for the simple linear regression model we will need to justify that the
assumptions in the linear regression model holds. This is handled by g-q plots,
and considering the relation between the residuals and the fitted values. This
analysis is exactly the same as for the simple linear regression in Section 5.7.

We saw that plotting the residuals as a function of fitted values could reveal
systematic dependence, which imply there are unmodelled effects that should
be included in the model. The question is of course how we can identify such
effects. One way is to plot the residuals as a function of potential regressors,
which are not included. Plotting the residuals as a function of the included
regressors might reveal non-linear effects. Again we illustrate this method by
an example:
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Il Example 6.15 Simulation

Consider the model in the R script below, the true model is
y; = x1+2x5 +¢, & ~ N(0,0.125?) (6-39)

in a real application the true model is of course hidden to us and we would start by
a multiple linear model with the two effects x; and x,. Looking at the plots below
also suggests that this might be a good model:

n <- 100

x1 <- runif(n)

x2 <- runif(n)

y <- x1 + 2*x2°2 + rnorm(n,sd=0.125)
plot(x1l, y, pch=19, cex=0.5)
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... . . & ...' ... ... . :...' .’.. [ .‘.. °
0| o ° o] o °
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o ) ..'.. o ..o. ..
=3 H ST e o ®
T T T T T I T T T T T I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x1 x2

Now we fit the model
yi = Bo+ Pix1+ Paxa+e;, & ~ N(0,0%), (6-40)

and plot the resulting residuals as a function of the fitted values, and the indepen-
dent variables (x; and x;). There seems to be a systematic dependence between the
fitted values and the residuals (left plot):

fit <- Im(y ~ x1 + x2)

plot(fitted.values(fit), residuals(fit), pch=19, cex=0.7)
plot(xl, residuals(fit), pch=19, cex=0.7)

plot(x2, residuals(fit), pch=19, cex=0.7)
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The left plot does however not suggest where the dependence comes from. Now
looking at the residuals as a function of x; and x; (centre and left plot) reveal that

the residuals seem to be quadratic in xp, and we should therefore include x% in the
model:

x3 <- x272

fit <- Im(y = x1 + x2 + x3)

plot(fitted.values(fit), residuals(fit), pch=19, cex=0.7)
plot(xl, residuals(fit), pch=19, cex=0.7)

plot(x2, residuals(fit), pch=19, cex=0.7)
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We now see that there is no systematic dependence in the residuals and we can
report the final result.



Chapter 6 |||| 6.5 LINEAR REGRESSION IN R 20

summary (fit)

Call:
Im(formula = y ~ x1 + x2 + x3)

Residuals:
Min 1Q Median 3Q Max
-0.27486 -0.07353 -0.00098 0.07630 0.23112

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -0.000979 0.032200 -0.03 0.98
x1 0.998212 0.042055 23.74 <2e-16 **x*
x2 0.087010 0.138613 0.63 0.53
x3 1.859060 0.140499 13.23 <2e-16 ***
Signif. codes: O ’*xx’ 0.001 ’*%’ 0.01 ’x> 0.05 >.” 0.1 > > 1

Residual standard error: 0.107 on 96 degrees of freedom
Multiple R-squared: 0.972,Adjusted R-squared: 0.972
F-statistic: 1.13e+03 on 3 and 96 DF, p-value: <2e-16

Now we can actually see that we find parameter values close to the true ones, further
we might actually exclude x, (while keeping x3) and the intercept from the model,
since they are not significantly different from zero.

6.5 Linear regressionin R

Method 6.16 below gives a practical summary of Chapter 5 and 6 with refer-
ences to the applied R-functions.
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lll Method 6.16

This method box is a very short guide to R and linear regression.

@ Physical /mechanistic
understanding

e

1: (Re)formulate linear or curve-linear model:
Vi, = Bo + Prx1k + - + BpTpk +ek; e ~ N(0,07)

[EEERRRRRS

2: Estimate parameters with:
>fit <- 1Im(y “x1 + ... + xp)

3: Residual analysis using e.g.:

> qgqnorm(residuals(fit)) # Normal assumption

> plot(fited.values(fit), residuals(fit)) # Checking for structures
> plot(x1l,residuals(fit)) # Identify structures

Deal with Collinearity e.g. PCA

Transformations or include more variable

4: Analyse model using;:
.......... > summary (model) # (p-values)

> confint (model) # (confidence interval for parameters)
Collinearity present? Simplify (using e.g. backward selection)

5: Calculate confidence and prediction interval using;:

> predict (model, newdata=data.frame(xl=x1new,...,Xp=xpnew),
interval="confidence")
> predict (model, newdata=data.frame(xl=x1new, ...,xXp=xpnew),

interval="prediction")

6.6 Matrix formulation

The multiple linear regression problem can be formulated in vector-matrix no-
tation as

Y=XB+e &~ N(0,0°1), (6-41)
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or
Y1 1 x10 -+ xp1]| |Po €1

: Lo : L+ ||, &~N(0,0%). (642
Yn 1 xl,n e xP,n ﬁp en

Notice, that the formulation in (6-41) is exactly the same as we saw in Section
5.5.

The residual sum of squares are calculated by
RSS =e'e = (y—XB) (y — XB), (6-43)

and the parameter estimates are given by:

ll Theorem 6.17

The estimators of the parameters in the simple linear regression model are
given by

p=(xTx)"'xTy, (6-44)
and the covariance matrix of the estimates is
VB = A(XTX), (6-45)

and central estimate for the residual variance is

RSS
6'2 _

— m . (6_46)

The proof of this theorem follows the exact same arguments as the matrix for-
mulation of the simple linear regression model in Chapter 5 and hence it is
omitted here.

Marginal tests (Hp : ; = Bio) can also in the multiple linear regression case be
constructed by

A

=

i— Bio

(Zp)ii

~tn—(p+1)). (6-47)
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6.6.1 Confidence and prediction intervals for the line

Now suppose that we want to make a prediction at a new point

Xnew =— [11 X1newrs - -s xp,new]/

in order to construct confidence and prediction intervals we calculate the vari-
ance of Yyhew

V(Ynew) = V(xnewﬁ)
= Xnew V(B)xT (6-48)

new

= UaneW(X Tx ) *1erleW,

in practice we will of course replace ¢ with its estimate (6%), and hence use
quantile of the appropriate t-distribution (and standard errors rather than vari-
ances) to calculate confidence intervals. The variance of a single prediction is
calculated by

V(Ynew) = V(*new + €new)
= Xnew V(B)xL.,, + 02 (6-49)
= 0 (1 4 Xnew (X" X) "],

I’IEW) °

The calculations above illustrate that the derivations of variances are relatively
simple, when we formulate our model in the matrix-vector notation.
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6.7 Exercises

Il Exercise 6.1 Nitrate concentration

In order to analyze the effect of reducing nitrate loading in a Danish fjord, it was
decided to formulate a linear model that describes the nitrate concentration in
the fjord as a function of nitrate loading, it was further decided to correct for
fresh water runoff. The resulting model was

Y; = Bo+ B1x1; + Paxai+ &, & ~ N(0,02), (6-50)

where Y; is the natural logarithm of nitrate concentration, x;; is the natural
logarithm of nitrate loading, and x;; is the natural logarithm of fresh water
run off.

a) Which of the following statements are assumed fulfilled in the usual mul-
tiple linear regression model?

1) ¢ =0foralli=1,..,n, and B; follows a normal distribution

2) E[x1) =E[xp) =0and V(e;] = B3

3) Ele] =0and Vie;] = B3

4) ¢; is normally distributed with constant variance, and ¢; and ¢; are
independent for i # j

5) ¢ =0foralli = 1,..,n, and X; follows a normal distribution for

j={12}

The parameters in the model were estimated in R and the following results are
available (slightly modified output from summary):

> summary (lm(y ~ x1 + x2))

Call:
Im(formula = y ~ x1 + x2)

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -2.36500 0.22184 -10.661 < 2e-16
x1 0.47621 0.06169 7.720 3.25e-13
X2 0.08269 0.06977 1.185 0.237
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Residual standard error: 0.3064 on 237 degrees of freedom
Multiple R-squared: 0.3438,Adjusted R-squared: 0.3382
F-statistic: 62.07 on 2 and 237 DF, p-value: < 2.2e-16

b) What are the parameter estimates for the model parameters (ﬁi and 6?)
and how many observations are included in the estimation?

c) Calculate the usual 95% confidence intervals for the parameters (B, B1,
and B»).

d) Onlevel & = 0.05 which of the parameters are significantly different from
0, also find the p-values for the tests used for each of the parameters?

lll Exercise 6.2 Multiple linear regression model

The following measurements have been obtained in a study:

No. 1 2 3 4 5 6 7 8 9 10 11 12 13
y 145 193 081 0.61 155 095 045 1.14 074 098 141 0.81 0.89
x1 058 086 029 020 056 028 0.08 041 022 035 059 022 0.26
x, 071 013 079 020 056 092 001 0.60 0.70 0.73 0.13 096 0.27
No. 14 15 16 17 18 19 20 21 22 23 24 25
y 068 139 153 091 149 138 173 111 1.68 0.66 0.69 1.98
x1 012 0.65 070 030 070 039 072 045 081 0.04 020 0.95
x 021 088 030 0.15 0.09 0.17 025 030 032 0.82 0.98 0.00

It is expected that the response variable y can be described by the independent
variables x; and x,. This imply that the parameters of the following model

should be estimated and tested

Y; = Bo + B1x1 + Pax2 + ¢,

e; ~ N(0,02).
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a) Calculate the parameter estimates (Bo, Bl, ,32, and ?72), in addition find the
usual 95% confidence intervals for By, B1, and B,.
You can copy the following lines to R to load the data:

D <- data.frame(
x1=c(0.58, 0.86,

0.59,
0.45,
x2=c(0.71,
0.13,
0.30,

0.

SO O O O

22,
.81,
.13,
.96,
.32,

.29,
OB
.04,
.79,
.27,
.82,

O O O O O O

O O O O O O

.20,
.12,
.20,
.20,
.21,
.98,

.56, 0.28, 0.08, 0.41, 0.22, 0.35,
.65, 0.70, 0.30, 0.70, 0.39, 0.72,
.95),
.56, 0.92, 0.01, 0.60, 0.70, 0.73,
.88, 0.30, 0.15, 0.09, 0.17, 0.25,
.00),

O O O O O O

y=c(1.45, 1.93, 0.81, 0.61, 1.55, 0.95, 0.45, 1.14, 0.74, 0.98,
1.41, 0.81, 0.89, 0.68,

1.11,

1.68, 0.66, 0.69,

1.39, 1.53, 0.91, 1.49, 1.38, 1.73,
1.98)

b) Still using confidence level & = 0.05 reduce the model if appropriate.

c) Carry out a residual analysis to check that the model assumptions are ful-

filled.

d) Make a plot of the fitted line and 95% confidence and prediction intervals
of the line for x; € [0, 1] (it is assumed that the model was reduced above).

lll Exercise 6.3

MLR simulation exercise

The following measurements have been obtained in a study:

Nr. 1
y 9.9
X1 1.00

X2 4.00

2
12.67
2.00
12.00

3

4

12.42  0.38
3.00 4.00
16.00 8.00

5 6 7 8
2077 9.52 238 7.46
500 6.00 7.00 8.00
32.00 24.00 20.00 28.00
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a)

b)

d)

e)

Plot the observed values of y as a function of x; and x;. Does it seem
reasonable that either x; or x; can describe the variation in y?
You may copy the following lines into R to load the data

D <- data.frame(
y=c(9.29,12.67,12.42,0.38,20.77,9.52,2.38,7.46),
x1=c(1.00,2.00,3.00,4.00,5.00,6.00,7.00,8.00),
x2=c(4.00,12.00,16.00,8.00,32.00,24.00,20.00,28.00)

)

Estimate the parameters for the two models

Yi = Bo+prxri+ei, &~ N(O,07),
and

Yi = Bo+Prxa;i+ei, &~ N(0,07),

and report the 95% confidence intervals for the parameters. Are any of the
parameters significantly different from zero on a 5% confidence level?

Estimate the parameters for the model
Y; = Bo+ Pix1;i+ Paxai+ &, & ~ (N(0,0%), (6-51)

and go through the steps of Method 6.16 (use confidence level 0.05 in all
tests).

Find the standard error for the line, and the confidence and prediction in-
tervals for the line for the points (min(x7), min(xy)), (%1, X2), (max(x1), max(xy)).

Plot the observed values together with the fitted values (e.g. as a function
of x1).
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Acronyms

ANOVA Analysis of Variance Glossary: Analysis of Variance

cdf cumulated distribution function Glossary: cumulated distribution function
CI confidence interval Glossary: confidence interval

CLT Central Limit Theorem Glossary: Central Limit Theorem
IQR Inter Quartile Range Glossary: Inter Quartile Range
LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function Glossary: probability density function
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