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8.1 Introduction

In Chapter 3 we saw how the averages of two different groups could be com-
pared, and our null hypothesis was

H0 : µ1 − µ2 = δ0, (8-1)

often we are interested in testing if the mean of the two groups are different
(H0 : µ1 = µ2), against the two-sided alternative (µ1 6= µ2). Often we will
face a situation where we have data in multiple (more than two) groups leading
to the natural extension of the two-sample situation to a multi-sample situation.
The hypothesis of k groups having the same means can then be expressed as:

H0 : µ1 = µ2 = · · · = µk. (8-2)

Or in words we have k groups (often refered to as treatments) and we want to
test if they all have the same mean against the alternative that at least one group
is different from the other groups. Note that the hypothesis is not expressing
any particular values for the means, but just that they are all the same.

The purpose of the data analysis in such a multigroup situation can be ex-
pressed as a two-fold purpose:

1. Answer the question: Are the group means (significantly) different? (Hy-
pothesis test)

2. Tell the story about (”quantify”) the groups and their potential differences
(Estimates and confidence intervals)

The statistical analysis used for such a data analysis is called one-way ANOVA
(analysis of variance). The apparent contradiction in the name of the whole
approach: To ”analyse the variance” when the stated purpose above explicitly
is to ”compare the means” will be much clearer when the approach has been
presented in detail, but the briefly expressed idea behind this is the following:
When comparing more then two means with each other, we do it by looking at
how different they are from each other, and a general way of expressing how
different k numbers (for the purpose here: the k means) are from each other is
by means of a variance. So we express group mean differences by the variance
of group means. Hence the name ANOVA.

The one-way ANOVA is the natural multi-sample extension of the indepen-
dent two-sample situation covered in Chapter 3. We will also present a natural
multi-sample extension of the two paired-sample situation from Chapter 3. This
generalisation, where the k samples are somehow dependent, e.g. if the same
individuals are used in each of the groups, is called two-way ANOVA.
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Figure 8.1: Conceptual plot for the ANOVA problem.
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Figure 8.2: pdf of F-distribution with 2 and 9 degrees of freedom (black line),
and with 4 and 9 degrees of freedom (red line).

8.2 One-way ANOVA

8.2.1 Data structure and model

As mentioned above we assume that we have data from k groups, also assume
ni repetitions in group (i), this imply that we can order data in a table like the
one below

Tr1 y11 · · · y1,n1
...

... · · ·
Trk yk,1 · · · yk,nk

The total number of observations is n = ∑k
i=1 ni, note that there does not have

to be the same number of observations within each group (treatment).

As for the two-sample case in Chapter 3 there are some standard assumptions
that are usually made in order for the methods to come to be 100% valid. In
the case of one-way ANOVA, these assumptions are expressed by formulating
a ”model” much like how regression models in Chapter 5 and 6 are expressed:

Yij = µi + εij; εij ∼ N(0, σ2), (8-3)

The model is expressing that the data comes from a normal distribution within
each group, that each group (i) has a specific mean, but also that the variance
is the same (σ2) for all groups. And further we see explicitly that we have a
number of observations (ni) within each group (j = 1, .., ni).

As noted above the relevant hypothesis to express to fullfill the first purpose
of the analysis is that of equal group means (8-2). It turns out that a slight
modification of (8-3) is convenient:

Yij = µ + αi + εij; εij ∼ N(0, σ2). (8-4)

Now, the situation is described with a µ that corresponds to the overall mean of
all the data (across all groups), and then αi = µi − µ is the difference between
each group mean and the overall mean. The group mean is then µi = µ + αi,
and the null hypothesis is expressed as

H0 : α1 = · · · = αk = 0, (8-5)

with the alternative H1 : αi 6= 0 for at least one i. The concept is illustrated in
Figure 8.1 (for k = 3), the black dots are the measurements yij, the red line is the
overall average, red dots are the average within each group, and the blue lines
are the difference between group average and the overall average (α̂i).

Let’s have a look at an example, before we discuss the analysis in further details.

The data used for Figure 8.1 is given in the table below

Group A Group B Group C
2.8 5.5 5.8
3.6 6.3 8.3
3.4 6.1 6.9
2.3 5.7 6.1

The question is of course: Is there a difference in the means of the groups (A, B and
C)? We start by having a look at the data

y <- c(2.8, 3.6, 3.4, 2.3,

5.5, 6.3, 6.1, 5.7,

5.8, 8.3, 6.9, 6.1)

treatm <- factor(c(1, 1, 1, 1,

2, 2, 2, 2,

3, 3, 3, 3))

plot(treatm,y)
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By using factor the treatments are not considered as numerical values by R, but
rather as factors (or groups), and the default plot is a box plot of the within group
variation. This plot gives information about the location of data and variance homo-
geneity (the model assumption), of course with only 4 observations in each group it
is difficult to asses this assumption.

Now we can calculate the parameter estimates (µ̂ and α̂i)

mu <- mean(y)

muis <- tapply(y, treatm, mean)

alpha <- muis - mu

mu

[1] 5.233333

muis

1 2 3

3.025 5.900 6.775

alpha

1 2 3

-2.2083333 0.6666667 1.5416667

so our estimate of the overall mean is µ̂ = 5.23, and the group levels (relative to the
overall average) are α̂1 = −2.21, α̂2 = 0.67, and α̂3 = 1.54. The question we need to
answer is: Can the differences in group averages be assigned to random variation
or are they significantly different from zero?

The shown use of the tapply function is a convenient way of finding the mean of y
for each level of the factor treatm. And by the way if the mean is substituted by any
other R-function, e.g. the variance, we could similarly find the variance within each
group: (we will have a closer look at these later)

tapply(y, treatm, var)

1 2 3

0.3491667 0.1333333 1.2491667

8.2.2 Decomposition of variability, the ANOVA table

A characteristic of ANOVA in general and one-way ANOVA specifically is the
fact that the overall variability, also called the total variability, decomposes into
interpretable components. For the one-way ANOVA presented in this section
the total variability, that is, the variability calculated across all the data com-
pletely ignoring the fact that the data falls in different groups, can be decom-
posed into two components: A component expressing the group differences
and a component expressing the (average) variability within the groups:

The total sum of squares (SST) can be decomposed into residual sum of
squares (SSE) and treatment sum of squares (SS(Tr))

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2

︸ ︷︷ ︸
SSE

+
k

∑
i=1

ni(ȳi − ȳ)2

︸ ︷︷ ︸
SS(Tr)

, (8-6)

where

ȳ =
1
n

k

∑
j=1

ni

∑
j=1

yij; ȳi =
1
ni

ni

∑
j=1

yij. (8-7)

And to repeat:

SST = SS(Tr) + SSE (8-8)

Before we turn to the proof of the theorem, we will briefly discuss some in-
terpretations and implications of this. First we look at each of the three terms
separately.

The SST expresses the total variability. Let us compare with the formula for a
sample variance from Chapter 1, expressed here for a one-sample situation with
observations x1, . . . , xn: (In Chapter 1 the observations were called yis but to not
confuse with the double indexed yijs of the current Chapter, we use here xi)

s2 =
1

n− 1

n

∑
i=1

(xi − x̄)2

We can see that if the Chapter 1 sample variance formula was applied to the yijs
of the current setting (by simply seeing it as a big one-sample data set), the sum
of all squared deviations coming from this is exactly SST. The double sum of the
SST definition is simply the formal way to express a summation of all double
indexed observations yij. Or similarly expressed, if we call the (one-sample)
variance of all the yijs, s2

y:

SST = (n− 1) · s2
y (8-9)

The group mean differences are quantified by the SS(Tr) component, as is ba-
sically directly seen from the definition, where the overall mean is subtracted
from each group mean. As discussed above this could then alternatively be
expressed by the name of these deviations α̂i:

SS(Tr) =
k

∑
i=1

ni(ȳi − ȳ)2 =
k

∑
i=1

niα̂
2
i , (8-10)

so SS(Tr) is the sum of squared αi’s multiplied by the number of observations
in group ni.

SS(Tr) is also the key expression to get the idea of why we call the whole
thing ”Analysis of variance”: If we, for a second, assume that we have the
same number of observations in each group: n1 = · · · = nk, and let us call
this common number m. Then we can express SS(Tr) directly in terms of
the variance of the k means:

SS(Tr) = (k− 1) ·m · s2
means,

where

s2
means =

1
k− 1

k

∑
i=1

(ȳi − ȳ)2

Let us emphasise that the formulas of this remark is not thought to be for-
mulas that we use for practical purposes, but they are expressed to show
explicitly that ”SS(Tr) quantifies the group differences by variability”.

Finally, SSE expresses the average variability within each group, as each in-
dividual observation yij is compared with the mean in the group to which it
belongs. In Figure 8.1 these are the differences between each of the black dots
with the relevant read dot. Again we can link the formula given above to basic
uses of the sample variance formula:

The residual sum of squares SSE divided by n− k, also called the residual
mean square MSE = SSE/(n − k) is the weighted average of the sample
variances from each group:

MSE =
SSE
n− k

=
(n1 − 1)s2

1 + · · ·+ (nk − 1)s2
k

n− k
(8-11)

where s2
i is the variance within the ith group:

s2
i =

1
ni − 1

ni

∑
i=1

(yij − ȳi)
2

When k = 2, that is, we are in the two-sample case studied in Chapter 3, the
result here is a copy of the pooled variance expression in Method 3.63:

For k = 2 : MSE = s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2
n− 2

Intuitively we would say that if some of the α̂i’s are large (in absolute terms),
then it is evidence against the null hypothesis of equal means. So a large SS(Tr)
value is evidence against the null hypothesis. It is also natural that “large”
should be relative to some variation. SSE is the within group variation, and it
also seems reasonable that if α̂i is large and the variation around µ̂i is small then
this is evidence against the null hypothesis. It does therefore seem natural to
compare SS(Tr) and SSE, and we will get back to the question of exactly how
to do this after the proof of Theorem 8.2.

Add and subtract ȳi in SST to get

k

∑
i=1

ni

∑
j=1

(yij − ȳ)2 =
k

∑
i=1

ni

∑
j=1

(yij − ȳi + ȳi − ȳ)2 (8-12)

=
k

∑
i=1

ni

∑
j=1

[
(yij − ȳi)

2 + (ȳi − ȳ)2 + 2(yij − ȳi)(ȳi − ȳ)
]

(8-13)

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2 +

k

∑
i=1

ni

∑
j=1

(ȳi − ȳ)2 + 2
k

∑
i=1

ni

∑
j=1

(yij − ȳi)(ȳi − ȳ)

(8-14)

=
k

∑
i=1

ni

∑
j=1

(yij − ȳi)
2 +

k

∑
i=1

ni(ȳi − ȳ)2 + 2
k

∑
i=1

(ȳi − ȳ)
ni

∑
j=1

(yij − ȳi)

(8-15)

now observe that ∑ni
j=1(yij − ȳi) = 0, and the proof is completed.

�

We can now continue our example and calculate SST, SSE, and SS(Tr)

SST <- sum((y - mu)^2)

SSE <- sum((y[treatm==1] - muis[1])^2)+

sum((y[treatm==2] - muis[2])^2)+

sum((y[treatm==3] - muis[3])^2)

SSTr <- 4 * sum(alpha^2)

c(SST, SSE, SSTr)

[1] 35.98667 5.19500 30.79167

For these data we have that n1 = n2 = n3 = 4, so according to Theorem 8.2 we could
also find SSE from the average of the variances within each group:

vars <- tapply(y, treatm, var)

(12-3)*mean(vars)

[1] 5.195

Now we have established that we should compare SS(Tr) and SSE in some
way, it should of course be quantified exactly in which way they should be
compared. Now it turns out that the numbers SS(Tr)/(k− 1) and SSE/(n− k)
are both central estimators for σ2, when the null hypothesis is true, and we can
state the following theorem

Under the null hypothesis

H0 : αi = 0; i = 1, 2, .., k (8-16)

the test statistic

F =
SS(Tr)/(k− 1)

SSE/(n− k)
(8-17)

follows an F-distribution with k− 1 and n− k degrees of freedom.

The F-distribution is generated by the ratio between independent χ2 distributed
random variables, and the shape is shown in Figure 8.2, for two particular
choices of degrees of freedom.

As we have discussed before, the null hypothesis should be rejected if SS(Tr)
is large and SSE is small. This implies that we should reject the null hypoth-
esis when the test statistic (F) is large in the sense of Theorem 8.6 (compare
with F1−α). The statistics are usually collected in an ANOVA table like the table
below.

Source of Degrees of Sums of Mean sum of Test- p-
variation freedom squares squares statistic F value
Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)

k−1 Fobs =
MS(Tr)

MSE P(F > Fobs)

Residual n− k SSE MSE = SSE
n−k

Total n− 1 SST

We can now continue with our example and find the F-statistic and the p-value:

F <- (SSTr/(3 - 1)/(SSE/(12 - 3)))

pv <- 1 - pf(F, df1 = 3 - 1, df2 = 12 - 3)

c(F , pv)

[1] 2.667228e+01 1.650052e-04

so we have a test statistic F = 26.7 and a p-value equal to 0.000165 and we reject the
null hypothesis on eg. level α = 0.05. The calculations can of course also be done
directly in R by

anova(lm(y ~ treatm))

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

treatm 2 30.792 15.3958 26.672 0.000165 ***

Residuals 9 5.195 0.5772

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Note that in the direct R calculation it is very important to include treatm as a factor,
in order to get the correct analysis.

If we reject the null hypothesis, it implies that the situation can be finally de-
scribed by the initial model re-stated here:

Yij = µ + αi + εij, εij ∼ N(0, σ2). (8-18)

and the estimate of σ2 is σ̂2 = SSE/(n− k) = MSE.

When k = 2, that is, we are in the two-sample case studied in Chapter 3, we
already saw above in Theorem 8.4 that MSE = s2

p. Actually, this means that
the analysis we get from a one-way ANOVA when we apply it for only k = 2
groups, which could be perfectly fine - nothing in the ANOVA approach
really relies on k having to be larger than 2 - corresponds to the pooled t-test
given as Method 3.63. More exactly

For k = 2 : Fobs = t2
obs

where tobs is the pooled version coming from Methods 3.63 and 3.64. And
the p-value obtained from the k = 2 group ANOVA equals exactly the p-
value obtained from the pooled t-test given in Method 3.64.

8.2.3 Post hoc comparisons

If we reject the overall null hypothesis above, and hence conclude that αi 6= 0 for
at least one i it makes sense to ask which of the treatments are actually different.
That is, trying to meet the second of the two major purposes indicated in the
beginning. This can be done by pairwise comparison of the treatments. We
have already seen in Chapter 3, that such comparison could be based on the t-
distribution. We can construct confidence interval with similar formulas except
that we should use SSE/(n − k) as the estimate of the residual variance and
hence also n− k degrees of freedom in the t-distribution:

A single pre-planned (1 − α) · 100% confidence interval for the difference
between treatment i and j is found as:

ȳi − ȳj ± t1−α/2

√√√√ SSE
n− k

(
1
ni

+
1
nj

)
(8-19)

where t1−α/2 is based on the t-distribution with n− k degrees of freedom.

If all M = k(k − 1)/2 combinations of pairwise confidence intervals are
found use the formula M times but each time with αBonferroni = α/M.

Similarly one could do pairwise hypothesis tests:

A single pre-planned level α hypothesis tests:

H0 : µi = µj, H1 : µi 6= µj

is carried out as:

tobs =
ȳi − ȳj√

MSE
(

1
ni
+ 1

nj

) (8-20)

and:
p− value = 2P(t > |tobs|)

where the t-distribution with n− k degrees of freedom is used.

If all M = k(k− 1)/2 combinations of pairwise hypothesis tests are carried
out use the approach M times but each time with test level αBonferroni =
α/M.

Returning to our small example we get the pairwise confidence intervals. If the
comparison of A and B was specifically planned before the experiment was carried
out, we would find the 95%-confidence interval as:

muis[1] - muis[2] + c(-1, 1) *

qt(0.975, df = 12 - 3) * sqrt(SSE/(12 - 3) * (1/4 + 1/4))

[1] -4.090288 -1.659712

and we can hence also conclude that treatment A is different from B. The p-value
supporting this claim is found as:

tobs <- (muis[1] - muis[2])/sqrt(SSE/(12 - 3) * (1/4 + 1/4))

2 * (1 - pt(abs(tobs), 9))

1

0.0004613963

If we do all three possible comparisons, M = 3 · 2/2 = 3, and we will use an overall
α = 0.05, we do the above three times, but using each time αBonferroni = 0.05/3 =

0.016667:

alphaBonf <- 0.05/3

## A-B

alpha[1] - alpha[2] + c(-1, 1) *

qt(1-alphaBonf/2, df = 12 - 3) * sqrt(SSE/(12 - 3) * (1/4 + 1/4))

[1] -4.450856 -1.299144

## A-C

alpha[1] - alpha[3] + c(-1, 1) *

qt(1-alphaBonf/2, df = 12 - 3) * sqrt(SSE/(12 - 3) * (1/4 + 1/4))

[1] -5.325856 -2.174144

## B-C

alpha[2] - alpha[3] + c(-1, 1) *

qt(1-alphaBonf/2, df = 12 - 3) * sqrt(SSE/(12 - 3) * (1/4 + 1/4))

[1] -2.4508562 0.7008562

and we conclude that treatment A is different from B and C, while we cannot reject
that B and C are equal. The p-values for the last two comparisons could also be
found, but we skip that now.

The so-called Bonferroni correction done above, when we do all possible post
hoc comparisons, has the effect that it becomes more difficult (than without the
correction) to claim that two treatments have different means.

The 0.05/3-critical value with 9 degrees of freedom is t0.9917 = 2.933 whereas the
0.05-critical value is t0.975 = 2.262:

c(qt(1 - alphaBonf/2, 9), qt(0.975, 9))

[1] 2.933324 2.262157

So two treatment means would be claimed different WITH the Bonferroni correction
if they differ by more than half the width of the confidence interval:

2.933 ·
√

SSE/9 · (1/4 + 1/4) = 1.576

whereas without the Bonferroni correction the should only differ by more than:

2.262 ·
√

SSE/9 · (1/4 + 1/4) = 1.215

to be claimed significantly different.

Such values just computed are called Least Significant Difference (LSD) val-
ues. If there is the same number of observations in each treatment group
m = n1 = · · · = nk they become particularly useful, as they will have the
same value for all the possible comparisons made:

LSDα = t1−α/2
√

2 ·MSE/m (8-21)

And with this measuring stick in our hands we can go and compare
all the observed means directly. When used for all of the comparisons,
as suggested, one should as level use the Bonferroni corrected version
LSDαBonferroni .

Imagine that we performed an ANOVA in a situation with k = 15 groups.
And then we do all the M = 15 · 14/2 = 105 possible pairwise hypothesis
tests. Assume for a moment that the overall null hypothesis is true, that
is, there really are no mean differences between any of the 15 groups. And
think about what would happen if we still performed all the 105 tests with
α = 0.05! How many significant results would we expect among the 105
hypothesis tests? The answer is that we expect α · 105 = 0.05 · 105 = 5.25,
that is, approximately 5 significant tests are expected. And what would the
probability be of getting at least one significant test out of the 105? The
answer to this question can be found using the binomial distribution:

P(At least one significant result out of 105 independent tests) = 1− 0.95105 = 0.9954

So whereas we, when performing a single test, have a probability of α = 0.05
of getting a significant result, when we shouldn’t, we now have an overall
Type I error, that is, probability of seeing at least one significant result, when
we shouldn’t, of 0.9954! This is an extreme (overall) Type 1 risk. This is also
sometimes called the ”family wise” type 1 risk. In other words, we will
basically always with k = 15 see at least one significant pairwise difference,
if we use α = 0.05. This is why we recommend to use a correction method
when doing multiple testings like this. The Bonferroni correction approach
is one out of several different possible approaches for this.

Using the Bonferroni corrected αBonferroni = 0.05/105 in this case for each of
the 105 tests would give the family wise type 1 risk:

P(At least one significant result out of 105 independent tests)

= 1− (1− 0.05/105)105 = 0.049

8.2.4 Model control

The assumptions for the analysis we have done and expressed in the one-way
ANOVA model are more verbally expressed as:

1. The data comes from a normal distribution in each group

2. The variances from each group are the same.

The homogeneous variances assumption can be controlled by simply looking at
the distributions within each sample, most conveniently for this purpose by the
groupwise box-plot already used for the example above.

The normality within groups assumption could in principle also be investigated
by looking at the distributions within each group - a direct generelization of
what was suggested in Chapter 3 for the two-group setting. That is, one could
do a qq-plot within each group. It is not uncommon though, that the amount of
data within a single group is too limited for a meaningfull qq-plot investigation.
Indeed for the example here, we have only 4 observations in each group, and
qq-plots for 4 observations do not make much sense.

There is an alternative, where the information from all the groups are pooled
together to a single qq-plot. If we pool together the 12 residuals, that is, within
group deviations, they should all follow the same zero-mean normal distribu-
tion, as

εij ∼ N(0, σ2)

To control for the normality assumptions in one-way ANOVA we perform a
qq-plot on the pooled set of n estimated residuals:

eij = yij − ȳi, j = 1, . . . , ni, i = 1 . . . , k

For the basic example we get the residual normal qq-plot from the inbuilt R-function
resid applied to the lm-result object:

residuals <- resid(lm(y ~ treatm))

qqnorm(residuals)

qqline(residuals)
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8.2.5 A complete worked through example: Plastic types for
lamps

On a lamp 2 plastic screens are to be mounted. It is essential that these plastic screens
have a good impact strength. Therefore a test is carried out of 5 different types of
plastic. 6 samples in each plastic type are tested. The strengths of these items are
determined. The following measurement data was found (strength in kJ/m2):

Type of plastic
I II III IV V

44.6 52.8 53.1 51.5 48.2
50.5 58.3 50.0 53.7 40.8
46.3 55.4 54.4 50.5 44.5
48.5 57.4 55.3 54.4 43.9
45.2 58.1 50.6 47.5 45.9
52.3 54.6 53.4 47.8 42.5

We run the following in R:

Strength=c(44.6, 52.8, 53.1, 51.5, 48.2, 50.5, 58.3, 50.0, 53.7, 40.8,

46.3, 55.4, 54.4, 50.5, 44.5, 48.5, 57.4, 55.3, 54.4, 43.9,

45.2, 58.1, 50.6, 47.5, 45.9, 52.3, 54.6, 53.4, 47.8, 42.5)

Plastictype <- factor(rep(1:5, 6))

plot(Strength ~ Plastictype)

1 2 3 4 5

45
50

55

Plastictype

S
tr

en
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h

anova(lm(Strength ~ Plastictype))

Analysis of Variance Table

Response: Strength

Df Sum Sq Mean Sq F value Pr(>F)

Plastictype 4 491.76 122.940 18.234 3.988e-07 ***

Residuals 25 168.56 6.742

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The anova results are more nicely put in a table here:

Df Sum Sq Mean Sq F value Pr(>F)
Plastictype 4 491.76 122.94 18.23 4 · 10−7

Residuals 25 168.56 6.74

From the box-plot we see that there appears to be group mean differences and ex-
tremely low p-value in the ANOVA table confirms this: There is very strong evi-
dence against the null hypothesis of the five means being the same:

H0 : µ1 = · · · = µ5

Model assumptions: The box-plot does not indicate clear variance differences (al-
though it can be a bit difficult to know exactly how different such patterns should
be for it to be a problem. Statistical tests exist for such varicance comparisons but
they are not part of the syllabus here). Let us check for the normality by doing a
normal qq-plot on the residuals:

residuals <- resid(lm(Strength ~ Plastictype))

mypl <- qqnorm(residuals)

abline(lm(y~x, mypl))
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Or using the idea of comparing with repeated plots on the standardized residuals:

library(MESS)

fit1<-lm(Strength ~ Plastictype)

sres<-rstandard(fit1)

qqwrap <- function(x, y, ...) {qqnorm(y, main="",...);

abline(a = 0, b = 1)}
wallyplot(sres, FUN = qqwrap)
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There appears to be no important deviation from normality.

For telling the final story about (quantifying) the five Plastic types, we first compute
the five means:

tapply(Strength, Plastictype, mean)

1 2 3 4 5

47.9 56.1 52.8 50.9 44.3

And then we want to construct the M = 5 · 4/2 = 10 different confidence intervals
using Method 8.9. As all nis equal 6 in this case, all 10 confidence intervals will have
the same width, and we can use Remark 8.13 and compute the (half) width of the
confidence intervals, the LSD-value. And since there are 10 multiple comparisons
we will use αBonferroni = 0.05/10 = 0.005:

LSD_0.005 <- qt(0.9975, 25) * sqrt(2*6.74/6)

LSD_0.005

[1] 4.613878

So Plastictypes are significantly different from each other if they differ by more than
4.61. A convenient way to collect the information about the 10 comparisons is by
ordering the means from smallest to largest and then using the so-called compact
letter display:

Plastictype Mean
5 44.3 a
1 47.9 ab
4 50.9 bc
3 52.8 cd
2 56.1 d

Plastiktypes with a mean difference less than the LSD-value, hence not significantly
different share letters. Plastictypes not sharing letters are significantly different. We
can hence read off all the 10 comparisons from this table.

One could also add the compact letter information to the boxplot for a nice plotting
- creativity is allowed.



8.3 Two-way ANOVA

8.3.1 Data structure and model

The one-way ANOVA is the natural multi-sample extension of the independent
two-sample situation covered in Chapter 3. The k samples are hence completely
independent from each other, which e.g. in a clinical experiment would mean
that different patients get different treatments - and hence each patient only
tries a single treatment. Often this would be the only possible way to perform a
comparison of treatments.

However, sometimes it will be possible to apply multiple treatments to the
same patient (with a certain time in between). This could then lead to a multi-
treatment situation where the sample within each treatment consist of the same
patients. This is the natural extension of the paired-design situation covered in
Chapter 3. we can only ”pair” if there is exactly 2 treatments. With more than
two treatments we use the phrase ”block”. A block would then be the patient
in this case - and the same blocks then appear in all treatment samples. The
”block” name comes from the historical background of these methods coming
from agricultural field trials, where a block would be an actual piece of land
within which all treatments are applied.

For the project manager who is in charge of designing the study there
will a choice to make in cases where both approaches are practicle feasi-
ble: Should the independent samples approach or the blocked approach be
used? Should we use, say, 4 groups of 20 patients each, that is 80 patients all
together, or should we use the same 20 patients in each of the four groups?
The costs would probably be more or less the same. It sounds nice with 80
patients rather than 20? However, the answer is actually pretty clear if what-
ever we are going to measure will vary importantly from person to person.
And most things in medical studies do vary a lot from person to person
due to many things: gender, age, weight, BMI, or simply due to genetic
differences that means that our bodies will respond differently to medicin.
Then the blocked design would definitely be the better choice! This is so,
as we will see below, in the analysis of the blocked design the block-main-
variability is accounted for and will not disturb the treatment difference sig-
nal. In the independent design the person-to-person variability may be the
main part of the within group varibility used for the statistical analysis. Or
differently put: In a block design each patient would act as his/her own
control, the treatment comparison is carried out ”within the block”.

For the actual study design it would in both cases be recommended to ran-
domize the allocation of patients as much as possible: In the independent
design patients should be allocated to treatments by randomization. In the
block design all patients receive all treatments but then one would random-
ize the order in which they receive the treatments. For this reason these two
types of expereimental designs are usually called the Completely Randomized
Design and the Randomized Block Design.

We looked above in the one-way part at an example with 3 treatments with 4
observations in each. If the observations were with 4 different persons (and
not 12) it would make sense and would be important to include this person
variability in the model, and the resulting model becomes:

Yij = µ + αi + β j + εij, εij ∼ N(0, σ2), (8-22)

so there is an overall mean µ, a treatment effect αi and a block effect β j and our
usual random error term εij.

The design is illustrated in the table below, so we have k treatments (A1, ..., Ak)
and l blocks (B1, ..., Bl).

B1 · · · Bl
A1 y11 · · · y1,l
...

... · · · ...
Ak yk,1 · · · yk,l

We can now find the parameters in the model above by

µ̂ =
1

k · l
k

∑
i=1

l

∑
j=1

yij (8-23)

α̂i =

(
1
l

l

∑
j=1

yij

)
− µ̂ (8-24)

β̂ j =

(
1
k

k

∑
i=1

yij

)
− µ̂ (8-25)

Or expressed more compactly, with the definitions of the terms obvious from
the above:

µ̂ = ¯̄y (8-26)
α̂i =ȳi· − ¯̄y (8-27)

β̂ j =ȳ·j − ¯̄y (8-28)

In a way, these means are the essential information in these data. All the rest we
do is just all the statistics to distinguish signal from noise. It does not change
the fact, that these means contain the core story. It also shows explicitly how we
now compute means not only across one way in the data table but also across
the other way. We compute means both row-wise and column-wise. Hence the
name: two-way ANOVA.

Lets assume that the data we used in the previous section was actually a result of a
randomized block design and we could therefore write

Group A Group B Group C
Block 1 2.8 5.5 5.8
Block 2 3.6 6.3 8.3
Block 3 3.4 6.1 6.9
Block 4 2.3 5.7 6.1

In this case we should of course keep track of the blocks as well as the treatments

y <- c(2.8, 3.6, 3.4, 2.3,

5.5, 6.3, 6.1, 5.7,

5.8, 8.3, 6.9, 6.1)

treatm <- factor(c(1, 1, 1, 1,

2, 2, 2, 2,

3, 3, 3, 3))

block <- factor(c(1, 2, 3, 4,

1, 2, 3, 4,

1, 2, 3, 4))

Now we can calculate the parameter estimates (µ̂ and α̂i, and β̂ j)

mu <- mean(y)

alpha <- tapply(y, treatm, mean) - mu

beta <- tapply(y, block, mean) - mu

c(mu, alpha, beta)

1 2 3 1 2

5.2333333 -2.2083333 0.6666667 1.5416667 -0.5333333 0.8333333

3 4

0.2333333 -0.5333333

so our estimates of the overall mean (µ) and αi remain the same while the estimated
block effects are β̂1 = −0.53, β̂2 = 0.83, β̂3 = 0.23, and β̂4 = −0.53.

8.3.2 Decomposition of variability and the ANOVA table

In the same way as we saw for the one-way ANOVA, there exists a decomposi-
tion of variation for the two-way ANOVA.

The total sum of squares (SST) can be decomposed into residual sum of
squares (SSE), treatment sum of squares (SS(Tr)), and a block sum of
squares (SS(Bl))

k

∑
i=1

l

∑
j=1

(yij − µ̂)2

︸ ︷︷ ︸
SST

=
k

∑
i=1

l

∑
j=1

(yij − α̂i − β̂ j − µ̂)2

︸ ︷︷ ︸
SSE

+ l ·
k

∑
i=1

α̂2
i︸ ︷︷ ︸

SS(Tr)

+ k ·
l

∑
j=1

β̂2
j︸ ︷︷ ︸

SS(Bl)

(8-29)

=
k

∑
i=1

l

∑
j=1

(yij − ȳi· − ȳ·j + ¯̄y)2

︸ ︷︷ ︸
SSE

+ l ·
k

∑
i=1

(ȳi· − ¯̄y)2

︸ ︷︷ ︸
SS(Tr)

+ k ·
l

∑
j=1

(ȳ·j − ¯̄y)2

︸ ︷︷ ︸
SS(Bl)

(8-30)

And to repeat:

SST = SS(Tr) + SS(Bl) + SSE (8-31)

Note how the SST and SS(Tr) are found exactly as in the one-way ANOVA.
If one ignores the block-way of the table, the two-way data has exactly the
same structure as one-way data (with the same number of observations in each
group). And note also how SS(Bl) corresponds to finding a ”one-way SS(Tr)”
but on the other way of the table (and ignoring the treatment-way of the data
table). So from a computational point of view, finding these three, that is, find-
ing SST, SS(Tr) and SS(Bl) is done by known one-way methodology. And then
the last one, SSE, could then be found from the decomposition theorem as:

SSE = SST − SS(Tr)− SS(Bl)

Returning to our standard example we get (SST and SS(Tr) remain unchanged)

SSBl <- 3 * sum(beta^2)

SSE <- SST - SSTr - SSBl

c(SST, SSE, SSTr, SSBl)

[1] 35.986667 1.241667 30.791667 3.953333

Again test for treatment effects and block effects are done by comparing SS(Tr),
or SS(Bl) with SSE.

Under the null hypothesis

H0,Tr : αi = 0; i = 1, 2, .., k (8-32)

the test statistic

FTr =
SS(Tr)/(k− 1)

SSE/((k− 1)(l − 1))
(8-33)

follows an F-distribution with k− 1 and (k− 1)(l − 1) degrees of freedom.
Further under the null hypothesis

H0,Bl : β j = 0; j = 1, 2, .., l (8-34)

the test statistic

FBl =
SS(Bl)/(l − 1)

SSE/((k− 1)(l − 1))
(8-35)

follows an F-distribution with l − 1 and (k− 1)(l − 1) degrees of freedom.

Returning to our standard example we get

## Test statistics

Ftr <- SSTr/(3 - 1)/(SSE/((3 - 1) * (4 - 1)))

Fbl <- SSBl/(4 - 1)/(SSE/((3 - 1) * (4 - 1)))

## p-values

pv.tr <- 1 - pf(Ftr, df1=3 - 1, df2=(3 - 1) * (4 - 1))

pv.bl <- 1 - pf(Fbl, df1=4 - 1, df2=(3 - 1) * (4 - 1))

c(Ftr, Fbl)

[1] 74.395973 6.367785

c(pv.tr, pv.bl)

[1] 0.0000582383 0.0270483378

or directly in R

anova(lm(y ~ treatm + block))

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

treatm 2 30.7917 15.3958 74.3960 5.824e-05 ***

block 3 3.9533 1.3178 6.3678 0.02705 *

Residuals 6 1.2417 0.2069

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Df Sum Sq Mean Sq F value Pr(>F)
treatm 2 30.79 15.40 74.40 0.0001
block 3 3.95 1.32 6.37 0.0270
Residuals 6 1.24 0.21

we see that the block effect is actually significant on a 5% confidence level, and also
that the p-value for the treatment effect is changed (the evidence against H0,Tr is
stronger) when we accounted for the block effect.

The test statistics and p-values are often collected in an analysis of variance
table as already shown above:

Source of Degrees of Sums of Mean sums of Test p-
variation freedom squares squares statistic F value
Treatment k− 1 SS(Tr) MS(Tr) = SS(Tr)

k−1 FTr =
MS(Tr)

MSE P(F > FTr)

Block l − 1 SS(Bl) MS(Bl) = SS(Bl)
l−1 FBl =

MS(Bl)
MSE P(F > FBl)

Residual (l − 1)(k− 1) SSE MSE = SSE
(k−1)(l−1)

Total n− 1 SST

8.3.3 Posthoc comparisons

The post hoc investigation is done following the same approach and principles
as for one-way ANOVA with the following differences:

1. Use the MSE and/or SSE from the two-way analysis instead of the MSE
and/or SSE from the one-way analysis.

2. Use (l − 1)(k− 1) instead of n− k as degrees of freedom and as denomi-
nator for SSE

With these changes the Method boxes 8.9 and 8.10 and the Remark 8.13 can be
used for post hoc investigation of treatment differences in a two-way ANOVA.

Returning to our small example we now find the pairwise treatment confidence in-
tervals within the two-way analysis. If the comparison of A and B was specifically
planned before the experiment was carried out, we would find the 95%-confidence
interval as:

muis[1] - muis[2] + c(-1, 1) *

qt(0.975, df = (4 - 1)*(3 - 1)) * sqrt(SSE/((4 - 1)*(3 - 1)) * (1/4 + 1/4))

[1] -3.662101 -2.087899

and we can hence also conclude that treatment A is different from B. The p-value
supporting this claim is found as:

tobs <- (muis[1] - muis[2])/sqrt(SSE/6 * (1/4 + 1/4))

2 * (1 - pt(abs(tobs), 6))

1

0.0001094734

If we do all three possible comparisons, M = 3 · 2/2 = 3, and we will use an overall
α = 0.05, we do the above three times, but using each time αBonferroni = 0.05/3 =

0.016667:

alphaBonf <- 0.05/3

## A-B

alpha[1] - alpha[2] + c(-1, 1) *

qt(1-alphaBonf/2, df = 6) * sqrt(SSE/6 * (1/4 + 1/4))

[1] -3.932479 -1.817521

## A-C

alpha[1] - alpha[3] + c(-1, 1) *

qt(1-alphaBonf/2, df = 6) * sqrt(SSE/6 * (1/4 + 1/4))

[1] -4.807479 -2.692521

## B-C

alpha[2] - alpha[3] + c(-1, 1) *

qt(1-alphaBonf/2, df = 6) * sqrt(SSE/6 * (1/4 + 1/4))

[1] -1.9324789 0.1824789

and we conclude that treatment A is different from B and C, while we cannot reject
that B and C are equal. The p-values for the last two comparisons could also be
found, but we skip that now.

8.3.4 Model control

Also model control runs almost exactly the same way for two-way ANOVA as
for one-way:

• Use a qq-plot on residuals to check for the normality assumption

• Check variance homegenity by categorized box plots

The only difference is that the box plotting to investigate variance homogeneity
should be done on the residuals - NOT on the actual data. And that we can
investigate both potential Treatment heterogeneity as Block heterogeneity.

First the residual normality plot:

residuals <- resid(lm(y ~ treatm + block))

qqnorm(residuals)

qqline(residuals)
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residuals

1 2 3 4 5 6

0.30833333 -0.25833333 0.14166667 -0.19166667 0.13333333 -0.43333333

7 8 9 10 11 12

-0.03333333 0.33333333 -0.44166667 0.69166667 -0.10833333 -0.14166667

Then the investigation of variance homogeneity:

par(mfrow=c(1,2))

plot(residuals ~ treatm)

plot(residuals ~ block)

1 2 3

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

treatm

re
si

du
al

s

1 2 3 4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

block

re
si

du
al

s

Actually, if we’ve had a more realistic example with a higher number of observations
for each block, we might have had a problem here as blocks 2 and 3 appears to be
quite different on their variability (but again, admitted: it is not very easy to know,
with the tools of this course, where the limit is between what is OK and what is not
OK).

8.3.5 A complete worked through example: Car tires

In a study of 3 different types of tires’ (”treatment”) effect on the fuel economy drives
of 1000 km in 4 different cars (”blocks”) were carried out. The results are listed in
the following table (km/l).

Car 1 Car 2 Car 3 Car 4 Mean
Tire 1 22.5 24.3 24.9 22.4 22.525
Tire 2 21.5 21.3 23.9 18.4 21.275
Tire 3 22.2 21.9 21.7 17.9 20.925
Mean 21.400 22.167 23.167 19.567 21.575

Let us analyse these data by two-way ANOVA, but first some explorative plotting:

y <- c(22.5, 24.3, 24.9, 22.4,

21.5, 21.3, 23.9, 18.4,

22.2, 21.9, 21.7, 17.9)

car <- factor(c(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4))

tire <- factor(c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3))

## Collecting the data in a data frame:

cardata <- data.frame(y, car, tire)

par(mfrow=c(1,2))

plot(y ~ tire)

plot(y ~ car)
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Then the actual two-way ANOVA:

carfit <- lm(y ~ car + tire, data = cardata)

anova(carfit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

car 3 25.1758 8.3919 7.0258 0.02173 *

tire 2 15.9267 7.9633 6.6670 0.02989 *

Residuals 6 7.1667 1.1944

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Df Sum Sq Mean Sq F value Pr(>F)
car 3 25.18 8.39 7.03 0.0217
tire 2 15.93 7.96 6.67 0.0299
Residuals 6 7.17 1.19

Conclusion: Tires (Treatments) are significantly different and Cars (Blocks) are sig-
nificantly different.

And the model control: (for the conclusions to be OK) First the residual normality
plot:

par(mfrow=c(1,1))

residuals <- resid(carfit)

qqnorm(residuals)

qqline(residuals)
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Then the investigation of variance homogeneity:

par(mfrow=c(1,2))

plot(residuals ~ car)

plot(residuals ~ tire)
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We do not see any important deviations from the model assumptions.

Finally, the post hoc analysis: First the treatment means:

tapply(y, tire, mean)

1 2 3

23.525 21.275 20.925

We can find the 0.05/3 (Bonferroni-corrected) LSD-value from the two-way version
of Remark 8.13:

LSD_bonf <- qt(1-0.05/6, 6) * sqrt(2*1.19/4)

LSD_bonf

[1] 2.535819

So tires are significantly different from each other if they differ by more than 2.54. A
convenient way to collect the information about the 3 comparisons is by ordering the
means from smallest to largest and then using the so-called compact letter display:

Tire Mean
3 20.925 a
2 21.275 a b
1 23.525 b

There is no significant difference between mean of Tire 2 and 3, and no significant
difference between mean of 2 and 1, but there is significant difference between mean
of 1 and 3.



8.4 Perspective

We have already seen how the R-version of the ANOVA, both one-way and
two-way, are carried out by the R-function lm. We also used lm for simple and
multiple linear regression (MLR) analysis in Chapters 5 and 6. ”lm” stands for
”linear model”, and in fact from a mathematical perspective all these models
are what can be termed linear models, or sometimes general linear models. So
differently put, the ANOVA models can in fact be expressed as multiple linear
regression models, and the theory and matrix notation etc. from MLR can be
used to also work with ANOVA models.

This becomes convenient to understand if one moves on to situations, models
and statistical analysis going beyond the current course. An example of this
would be situations where we have as well factors as quantitative regression
input in the same data set.

Important to know also is that the two basic ANOVA versions presented in this
material is just the start to be able to handle more general situations. An exam-
ple could be that, a two-way ANOVA could also occur in a different way than
shown here: If we perform what would be a completely randomized study,
that is, we have independent sampled groups, but with the groups being repre-
sented by a two-way treatment factor structure, say, factor A with 5 levels and
factor B with 3 levels. Hence we have all 15 groups consisting of all combina-
tions of the two treatments, but with several observations within each of the 15
groups. This would sometimes be called a two-way ANOVA with replications,
whereas the randomized block setting covered above then would be the two-
way ANOVA without replication (there is only and exactly one observation for
each combination of treatment and block).

And then the next step could be even more than two treatment factors, and
maybe such a multi-factorial setting could even be combined with blocking and
maybe some quantitative x-input (then often called covariates) calling for ex-
tentions of all this.

Another important extension direction are situations with different levels of ob-
servations/variability: There could be hierarchical structures in the data, e.g.
repeated measurents on an individual animal, but having also many animals in
the study, and animals might come from different farms, that lies in different
regions within different countries. This calls for so-called Hierarchical mod-
els, multi-level models, variance components models or models where both
treatment factors and such hierarchical random effects are present, the so-called
mixed models.

All of this and many other good things can be learned in later statistics courses!



8.5 Exercises

To investigate the effect of two recent national Danish aquatic environment ac-
tion plans the concentration of nitrogen (measured in g/m3) have been mea-
sured in a particular river just before the national action plans were enforced
(1998 and 2003) and in 2011. Each measurement is repeated 6 times during a
short stretch of river. The result is shown in the following table:

N1998 N2003 N2011
5.01 5.59 3.02
6.23 5.13 4.76
5.98 5.33 3.46
5.31 4.65 4.12
5.13 5.52 4.51
5.65 4.92 4.42

Average 5.5517 5.1900 4.0483

Further, the total variation in the data is SST = 11.4944. You got the following
output from R corresponding to a oneway analysis of variance: (where most of
the information, however, is replaced by the letters A-E as well as U and V)

> anova(lm(N~Year))

Analysis of Variance Table

Response: N

Df SumSq MeanSq Fvalue Pr(>F)

Year A B C U V

Residuals D 4.1060 E

a) What numbers did the letters A-D substitute?

b) If you use the significance level α = 0.05, what critical value should be
used for the hypothesis test carried out in the analysis (and in the table
illustrated with the figures U and V)?

c) Can you with these data demonstrate statistically significant (at signifi-
cance level α = 0.05) any differences in N-mean values from year to year?
(Both conclusion and argument must be valid)

d) A 90% confidence interval for the single mean difference between year
2011 and year 1998 becomes:

This exercise is using the same data as the previous exercise, but let us repeat the
description: To investigate the effect of two recent national Danish aquatic en-
vironment action plans the concentration of nitrogen (measured in g/m3) have
been measured in a particular river just before the national action plans were
enforced (1998 and 2003) and in 2011. Each measurement is repeated 6 times
during a short stretch of river. The result is shown in the following table, where
we have now added also the variance computed within each group.

N1998 N2003 N2011
5.01 5.59 3.02
6.23 5.13 4.76
5.98 5.33 3.46
5.31 4.65 4.12
5.13 5.52 4.51
5.65 4.92 4.42

Average 5.5517 5.1900 4.0483
Variance 0.2365767 0.1313200 0.4532967

The data can be read into R and the means and variances computed by the
following R-lines:

N <-c(5.01, 5.59, 3.02,

6.23, 5.13, 4.76,

5.98, 5.33, 3.46,

5.31, 4.65, 4.12,

5.13, 5.52, 4.51,

5.65, 4.92, 4.42)

Year <- factor(rep(c("1998", "2003", "2011"), 6))

tapply(N, Year, mean)

tapply(N, Year, var)

mean(N)

a) Compute the three sums of squares (SST, SS(Tr) and SSE) using the three
means and three variances (and the overall mean).(Show the formulas ex-
plicitly)

b) Find the SST-value in R using the sample variance function var

c) Run the ANOVA in R and produce the ANOVA table by R.

d) Do a complete post-hoc analysis where all the 3 years are compared pair-
wise.

e) Use R to do model validation by residual investigation.

A company is starting a production of a new type of patch. For the product a
thin plastic film is to be used. Samples of products were received from 5 possible
suppliers. Each sample consisted of 20 measurements of the film thickness and
the following data were found:

Average film thickness Sample standard deviation
x̄ in µm s in µm

Supplier 1 31.4 1.9
Supplier 2 30.6 1.6
Supplier 3 30.5 2.2
Supplier 4 31.3 1.8
Supplier 5 29.2 2.2

From the usual calculations for a one-way analysis of variance the following is
obtained:

Source Degrees of freedom Sums of Squares
Supplier 4 SS(Tr)=62
Error 95 SSE=362.71

a) Is there a significant (α = 5%) difference between the average film thick-
nesses for the suppliers? (Both conclusion and argument must be correct)

b) A 95% confidence interval for the difference in mean film thicknesses of
supplier 1 and supplier 4 becomes: (considered as a ”single pre-planned”
comparison)

When brass is used in a production, the modulus of elasticity, E, of the material
is often important for the functionality. The modulus of elasticity for 6 different
brass alloys are measured. 5 samples from each alloy are tested. The results are
shown in the table below where the measured modulus of elasticity is given in
GPa:

Brass alloys
M1 M2 M3 M4 M5 M6
82.5 82.7 92.2 96.5 88.9 75.6
83.7 81.9 106.8 93.8 89.2 78.1
80.9 78.9 104.6 92.1 94.2 92.2
95.2 83.6 94.5 87.4 91.4 87.3
80.8 78.6 100.7 89.6 90.1 83.8

In an R-run for oneway analysis of variance:

anova(lm(ElasModul~Alloy))

the following output is obtained: (however some of the values have been sub-
stituted by the symbols A, B, and C)

> anova(lm(ElasModul~Alloy))

Analysis of Variance Table

Response: ElasModul

Df Sum Sq Mean Sq F value Pr(>F)

Alloy A 1192.51 238.501 9.9446 3.007e-05

Residuals B C 23.983

a) The values of A, B, and C are:

b) The assumptions for using the oneway analysis of variance is: (Choose
the answer that most correctly lists all the assumptions and NOT lists any
unnecessary assumptions)

1 The data must be normally distributed within each group, indepen-
dent and the variances within each group should not differ signifi-
cantly from each other

2 The data must be normally distributed within each group and inde-
pendent

3 The data must be normally distributed and have approximately the
same mean and variance within each group

4 The data should not bee too large or too small

5 The data must be normally distributed within each group and have
approximately the same IQR-value in each group

c) A 95% confidence interval for the single pre-planned difference between
brass alloy 1 and 2 becomes:

Some plastic tubes for which the tensile strength is essential are to be produced.
Hence, sample tube items are produced and tested, where the tensile strength
is determined. Two different granules and four possible suppliers are used in
the trial. The measurement results (in MPa) from the trial are listed in the table
below.

Granule
g1 g2

Supplier a 34.2 33.1
Supplier b 34.8 31.2
Supplier c 31.3 30.2
Supplier d 31.9 31.6

The following is run in R:

Y=c(34.2,34.8,31.3,31.9,33.1,31.2,30.2,31.6)

Supplier=c("a","b","c","d","a","b","c","d")

Granule=factor(c(1,1,1,1,2,2,2,2))

anova(lm(Y~Supplier+Granule))

with the following result:

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

Supplier 3 10.0338 3.3446 3.2537 0.1792

Granule 1 4.6512 4.6512 4.5249 0.1233

Residuals 3 3.0837 1.0279

a) What distribution has been used to find the P-value 0.1792?

b) What is the most correct conclusion based on the analysis among the fol-
lowing options? (use α = 0.05)

1 A significant difference can be demonstrated between the variances
from the analysis of variance

2 A significant difference can be demonstrated between the means for
the 2 granules but not for the 4 suppliers

3 No significant difference can be demonstrated between the means for
neither the 4 suppliers nor the 2 granules

4 A significant difference can be demonstrated between the means for
as well the 4 suppliers as the 2 granules

5 A significant difference can be demonstrated between the means for
the 4 suppliers but not for the 2 granules

To compare alternative joining methods and materials a series of experiments
are now performed where three different joining methods and four different
choices of materials are compared.

Data from the experiment are shown in the table below:

Material Row
Joining methods 1 2 3 4 average
A 242 214 254 248 239.50
B 248 214 248 247 239.25
C 236 211 245 243 233.75
Column average 242 213 249 246

In an R-run for two-way analysis of variance:

Strength=c(242,214,254,248,248,214,248,247,236,211,245,243)

Joiningmethod=factor(c("A","A","A","A","B","B","B","B","C","C","C","C"))

Material=factor(c(1,2,3,4,1,2,3,4,1,2,3,4))

anova(lm(Strength ~ Joiningmethod + Material))

the following output is produced: (where some of the values are replaced by
the symbols A, B, C, D, E and F)

Analysis of Variance Table

Response: Strength

Df Sum Sq Mean Sq F value Pr(>F)

Joiningmethod A 84.5 B C 0.05041 .

Material D E 825.00 F 1.637e-05 ***

Residuals 6 49.5 8.25

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

a) What are the values for A, B and C?

b) What are the conclusions concerning the importance of the two factors in
the experiment? (using the usual level α = 5%)

c) Do post hoc analysis for as well the Materials as Joining methods. (Confi-
dence intervals for pairwise differences and/or hypothesis tests for those
differences)

d) Do residual investigation to check for the assumptions of the model:

1. Normality

2. Variance homogeneity

A supermarket has just opened a delicacy department wanting to make its own
homemade ”remoulade” (a Danish delicacy consisting of a certain mixture of
pickles and dressing). In order to find the best recipe a taste test was conducted.
4 different kinds of dressing and 3 different types of pickles were used in the
test. Taste evaluation of the individual ”remoulade” versions were carried out
on a continuous scale from 0 to 5

The following measurement data were found:

Dressing type Row
Pickles type A B C D average
I 4.0 3.0 3.8 2.4 3.30
II 4.3 3.1 3.3 1.9 3.15
III 3.9 2.3 3.0 2.4 2.90
Column average 4.06 2.80 3.36 2.23

In an R-run for twoway ANOVA:

anova(lm(Taste ~ Pickles + Dressing))

the following output is obtained: (however some of the values have been sub-
stituted by the symbols A, B, C, D, E and F)

anova(lm(Taste ~ Pickles + Dressing))

Analysis of Variance Table

Response: Taste

Df Sum Sq Mean Sq F value Pr(F)

Pickles A 0.3267 0.16333 E 0.287133

Dressing B 5.5367 1.84556 F 0.002273

Residuals C D 0.10556

a) What are the values of A, B, and C?

b) What aretThe values of D, E, and F?

c) With a test level of α = 5% the conclusion of the analysis becomes:

In a study the transport delivery times for three transport firms are compared,
and the study also involves the size of the transported item. For delivery times
in days, the following data found:

The size of the item Row
Small Intermediate Large average

Firm A 1.4 2.5 2.1 2.00
Firm B 0.8 1.8 1.9 1.50
Firm C 1.6 2.0 2.4 2.00
Coulumn average 1.27 2.10 2.13

In R was run:

anova(lm(Time ~ Firm + Itemsize))

and the following output was obtained: (wherein some of the values, however,
has been replaced by the symbols A, B, C and D)

Analysis of Variance Table

Response: Time

Df Sum Sq Mean Sq F value Pr(>F)

Firm 2 A B 4.2857 0.10124

Itemsize 2 1.44667 C D 0.01929

Residuals 4 0.23333 0.05833

a) What is A, B, C and D?

b) The conclusion of the analysis becomes? (with a test level of 5%)
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