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In this chapter elements from probability theory are introduced. These are
needed to form the basic mathematical description of randomness. For example
for calculating the probabilities of outcomes in various types of experimental or
observational study setups. Small illustrative examples, such as e.g. dice rolls
and lottery draws, and natural phenomena such as the waiting time between
radioactive decays are used as throughout. But the scope of probability theory
and it’s use in society, science and business, not least engineering endavour,
goes way beyond these small examples. The theory is introduced together with
illustrative R code examples, which the reader is encouraged to try and interact
with in parallel to reading the text. Many of these are of the learning type, cf.
the discussion of the way R is used in the course in Section 1.5.

2.1 Random variable

The basic building blocks to describe random outcomes of an experiment are
introduced in this section. The definition of an experiment is quite broad. It can
be an experiment, which is carried out under controlled conditions e.g. in a
laboratory or flipping a coin, as well as an experiment in conditions which are
not controlled, where for example a process is observed e.g. observations of
the GNP or measurements taken with a space telescope. Hence, an experiment
can be thought of as any setting in which the outcome cannot be fully known.
This for example also includes measurement noise, which are random “errors”
related to the system used to observe with, maybe originating from noise in
electrical circuits or small turbulence around the sensor. Measurements will
always contain some noise.

First the sample space is defined:

Definition 2.1

The sample space S is the set of all possible outcomes of an experiment.

Example 2.2

Consider an experiment in which a person will throw two paper balls with the pur-
pose of hitting a wastebasket. All the possible outcomes forms the sample space of
this experiment as

S =
{
(miss,miss), (hit,miss), (miss,hit), (hit,hit)

}
. (2-1)
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Now a random variable can be defined:

Definition 2.3

A random variable is a function which assigns a numerical value to each out-
come in the sample space. In this book random variables are denoted with
capital letters, e.g.

X, Y, . . . . (2-2)

Example 2.4

Continuing the paper ball example above, a random variable can be defined as the
number of hits, thus

X
(
(miss,miss)

)
= 0, (2-3)

X
(
(hit,miss)

)
= 1, (2-4)

X
(
(miss,hit)

)
= 1, (2-5)

X
(
(hit,hit)

)
= 2. (2-6)

In this case the random variable is a function which maps the sample space S to
positive integers, i.e. X : S→N0.

Remark 2.5

The random variable represents a value of the outcome before the experiment
is carried out. Usually the experiment is carried out n times and there are
random variables for each of them

{Xi : 1, 2, . . . , n}. (2-7)

After the experiment has been carried out n times a set of values of the ran-
dom variable is available as

{xi : 1, 2, . . . , n}. (2-8)

Each value is called a realization or observation of the random variable and
is denoted with a small letter sub-scripted with an index i, as introduced in
Chapter 1.
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Finally, in order to quantify probability, a random variable is associated with
a probability distribution. The distribution can either be discrete or continuous
depending on the nature of the outcomes:

• Discrete outcomes can for example be: the outcome of a dice roll, the num-
ber of children per family, or the number of failures of a machine per year.
Hence some countable phenomena which can be represented by an inte-
ger.

• Continuous outcomes can for example by: the weight of the yearly har-
vest, the time spend on homework each week, or the electricity generation
per hour. Hence a phenomena which can be represented by a continuous
value.

Furthermore, the outcome can either be unlimited or limited. This is most ob-
vious in the case discrete case, e.g. a dice roll is limited to the values between
1 and 6. However it is also often the case for continuous random variables, for
example many are non-negative (weights, distances, etc.) and proportions are
limited to a range between 0 and 1.

Conceptually there is no difference between the discrete and the continuous
case, however it is easier to distinguish since the formulas, which in the discrete
case are with sums, in the continuous case are with integrals. In the remaining
of this chapter, first the discrete case is presented and then the continuous.
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2.2 Discrete random variables

In this section discrete distributions and their properties are introduced. A dis-
crete random variable has discrete outcomes and follows a discrete distribution.

To exemplify, consider the outcome of one roll of a fair six-sided dice as the
random variable Xfair. It has six possible outcomes, each with equal probability.
This is specified with the probability density function.

Definition 2.6

For a discrete random variable X the probability density function (pdf) is

f (x) = P(X = x). (2-9)

It assigns a probability to every possible outcome value x.
A discrete pdf fulfills two properties: there are no negative probabilities for
any outcome value

f (x) ≥ 0 for all x, (2-10)

and the probabilities for all outcome values sum to one

∑
all x

f (x) = 1. (2-11)

Example 2.7

For the fair dice the pdf is

x 1 2 3 4 5 6
fXfair(x) 1

6
1
6

1
6

1
6

1
6

1
6

If the dice is not fair, maybe it has been modified to increase the probability of rolling
a six, the pdf could for example be

x 1 2 3 4 5 6
fXunfair(x) 1

7
1
7

1
7

1
7

1
7

2
7

where Xunfair is a random variable representing the value of a roll with the unfair
dice.
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The pdfs are plotted: the left plot shows the pdf of a fair dice and the right plot the
pdf of an unfair dice:
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Remark 2.8

Note that the pdfs has subscript with the symbol of the random variable to
which they belong. This is done when there is a need to distinguish between
pdfs e.g. for several random variables. For example if two random variables
X and Y are used in same context, then: fX(x) is the pdf for X and fY(x) for
Y, similarly the sample standard deviation sX is for X and sY is for Y, and so
forth.

The cumulated distribution function (cdf), or simply the distribution function, is of-
ten used.

Definition 2.9 The cdf

The cumulated distribution function (cdf) for the discrete case is the probability
of realizing an outcome below or equal to the value x

F(x) = P(X ≤ x) = ∑
j where xj≤x

f (xj) = ∑
j where xj≤x

P(X = xj). (2-12)

The probability that the outcome of X is in a range is

P(a < X ≤ b) = F(b)− F(a). (2-13)
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For the fair dice the probability of an outcome below or equal to 4 can be calcu-
lated

FXfair(4) =
4

∑
j=1

fXfair(xj) =
1
6
+

1
6
+

1
6
+

1
6
=

2
3

. (2-14)

Example 2.10

For the fair dice the cdf is

x 1 2 3 4 5 6
FXfair(x) 1

6
2
6

3
6

4
6

5
6 1

The cdf for a fair dice is plotted in the left plot and the cdf for an unfair dice is plotted
in the right plot:
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2.2.1 Introduction to simulation

One nice thing about having computers available is that we try things in virtual
reality - this we can here use here to play around while learning how prob-
ability and statistics work. With the pdf defined an experiment can easily be
simulated, i.e. instead of carrying out the experiment in reality it is carried out
using a model on the computer. When the simulation includes generating ran-
dom numbers it is called a stochastic simulation. Such simulation tools are readily
available within R, and it can be used for as well learning purposes as a way to
do large scale complex probabilistic and statistical computations. For now it
will be used in the first way.

Example 2.11 Simulation of rolling a dice

Let’s simulate the experiment of rolling a dice using the following R code (open the
file chapter2-ProbabilitySimulation.R and try it)

## Make a random draw from (1,2,3,4,5,6) with equal probability
## for each outcome
sample(1:6, size=1)

The simulation becomes more interesting when the experiment is repeated many
times, then we have a sample and can calculate the empirical density function (or em-
pirical pdf or density histogram, see Section 1.6.1) as a discrete histogram and actually
“see” the shape of the pdf

## Simulate a fair dice

## Number of simulated realizations
n <- 30
## Draw independently from the set (1,2,3,4,5,6) with equal probability
xFair <- sample(1:6, size=n, replace=TRUE)
## Count the number of each outcome using the table function
table(xFair)
## Plot the pdf
par(mfrow=c(1,2))
plot(rep(1/6,6), type="h", col="red", ylim=c(0,1), lwd=10)
## Plot the empirical pdf
lines(table(xFair)/n, lwd=4)
## Plot the cdf
plot(cumsum(rep(1/6,6)), ylim=c(0,1), lwd=10, type="h", col="red")
## Add the empirical cdf
lines(cumsum(table(xFair)/n), lwd=4, type="h")

../book-scripts/chapter2-ProbabilitySimulation.R
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Try simulating with different number of rolls n and describe how this affects
the accuracy of the empirical pdf compared to the pdf?

Now repeat this with the unfair dice

## Simulate an unfair dice

## Number of simulated realizations
n <- 30
## Draw independently from the set (1,2,3,4,5,6) with higher
## probability for a six
xUnfair <- sample(1:6, size=n, replace=TRUE, prob=c(rep(1/7,5),2/7))
## Plot the pdf
plot(c(rep(1/7,5),2/7), type="h", col="red", ylim=c(0,1), lwd=10)
## Plot the empirical density function
lines(table(xUnfair)/n, lwd=4)
## Plot the cdf
plot(cumsum(c(rep(1/7,5),2/7)), ylim=c(0,1), lwd=10, type="h", col="red")
## Add the empirical cdf
lines(cumsum(table(xUnfair)/n), lwd=4, type="h")
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Compare the fair and the unfair dice simulations:

How did the empirical pdf change?

By simply observing the empirical pdf can we be sure to distinguish be-
tween the fair and the unfair dice?

How does the number of rolls n affect how well we can distinguish the two
dices?

One reason to simulate becomes quite clear here: it would take considerably
more time to actually carry out these experiments. Furthermore, sometimes
calculating the theoretical properties of random variables (e.g. products of sev-
eral random variables etc.) are impossible and simulations can be a useful way
to obtain such results.

Random number sequences generated with software algorithms have the prop-
erties of real random numbers, e.g. they are independent, but are in fact de-
terministic sequences depending on a seed, which sets an initial value of the
sequence. Therefore they are named pseudo random numbers, since they behave
like and are used as random numbers in simulations, but are in fact determin-
istic sequences.
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Remark 2.12 Random numbers and seed in R

In R the initial values can be set with a single number called the seed as
demonstrated with the following R code. As default the seed is created from
the time of start-up of a new instance of R. A way to generate truly (i.e. non-
pseudo) random numbers can be to sample some physical phenomena, for
example atmospheric noise as done at www.random.org.

## The random numbers generated depends on the seed

## Set the seed
set.seed(127)
## Generate a (pseudo) random sequence
sample(1:10)

[1] 3 1 2 8 7 4 10 9 6 5

## Generate again and see that new numbers are generated
sample(1:10)

[1] 9 3 7 2 10 8 6 1 5 4

## Set the seed and the same numbers as before just after the
## seed was set are generated
set.seed(127)
sample(1:10)

[1] 3 1 2 8 7 4 10 9 6 5

2.2.2 Mean and variance

In Chapter 1 the sample mean and the sample variance were introduced. They
indicate respectively the centering and the spread of data, i.e. of a sample. In
this section the mean and variance are introduced. They are properties of the
distribution of a random variable, they are called population parameters. The
mean indicates where the distribution is centered. The variance indicates the
spread of the distribution.

www.random.org
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Mean and expected value

The mean (µ) of a random variable is the population parameter which most sta-
tistical analysis focus on. It is formally defined as a function E(X): the expected
value of the random variable X.

Definition 2.13 Mean value

The mean of a discrete random variable X is

µ = E(X) =
∞

∑
i=1

xi f (xi), (2-15)

where xi is the value and f (xi) is the probability that X takes the outcome
value xi.

The mean is simply the weighted average over all possible outcome values,
weighted with the corresponding probability. As indicated in the definition
there might be infinitely many possible outcome values, hence, even if the total
sum of probabilities is one, then the probabilities must go sufficiently fast to
zero for increasing values of X in order for the sum to be defined.

Example 2.14

For the fair dice the mean is calculated by

µxfair = E(Xfair) = 1
1
6
+ 2

1
6
+ 3

1
6
+ 4

1
6
+ 5

1
6
+ 6

1
6
= 3.5,

for the unfair dice the mean is

µxunfair = E(Xunfair) = 1
1
7
+ 2

1
7
+ 3

1
7
+ 4

1
7
+ 5

1
7
+ 6

2
7
≈ 3.86.

The mean of a random variable express the limiting value of an average of many
outcomes. If a fair dice is rolled a really high number of times the sample mean
of these will be very close to 3.5. For the statistical reasoning related to the use of
a sample mean as an estimate for µ, the same property ensures that envisioning
many sample means (with the same n), a meta like thinking, then the mean of
such many repeated sample means will be close to µ.

After an experiment has been carried out n times then the sample mean or average
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can be calculated as previously defined in Chapter 1

µ̂ = x̄ =
1
n

n

∑
i

xi. (2-16)

It is called a statistic, which means that it is calculated from a sample. Note the
use of a hat in the notation over µ: this indicates that it is an estimate of the real
underlying mean.

Our intuition tells us that the estimate (µ̂) will be close to true underlying ex-
pectation (µ) when n is large. This is indeed the case, to be more specific
E
[

1
n ∑ Xi

]
= µ (when E[Xi] = µ), and we say that the average is a central

estimator for the expectation. The exact quantification of these qualitative state-
ments will be covered in Chapter 3.

Now play a little around with the mean and the sample mean with some simu-
lations.

Example 2.15 Simulate and estimate the mean

Carrying out the experiment more than one time an estimate of the mean, i.e. the
sample mean, can be calculated. Simulate rolling the fair dice

## Simulate a fair dice

## Number of realizations
n <- 30
## Simulate rolls with a fair dice
xFair <- sample(1:6, size=n, replace=TRUE)
## Calculate the sample mean
sum(xFair)/n

[1] 3.6

## or
mean(xFair)

[1] 3.6

Let us see what happens with the sample mean of the unfair dice by simulating the
same number of rolls



Chapter 2 2.2 DISCRETE RANDOM VARIABLES 13

## Simulate an unfair dice

## n realizations
xUnfair <- sample(1:6, size=n, replace=TRUE, prob=c(rep(1/7,5),2/7))
## Calculate the sample mean
mean(xUnfair)

[1] 3.967

Consider the mean of the unfair dice and compare it to the mean of the fair
dice (see Example 2.14). Is this in accordance with your simulation results?

Let us again turn to how much we can “see” from the simulations and the impact
of the number of realizations n on the estimation. In statistics the term information is
used to refer to how much information is embedded in the data, and therefore how
accurate different properties (parameters) can be estimated from the data.

Repeat the simulations several times with n = 30. By simply comparing the
sample means from a single simulation can it then be determined if the two
means really are different?

Repeat the simulations several times and increase n. What happens with to
the ’accuracy’ of the sample mean compared to the real mean? and thereby
how well it can be inferred if the sample means are different?

Does the information embedded in the data increase or decrease when n is
increased?

Variance and standard deviation

The second most used population parameter is the variance (or standard devia-
tion). It is a measure describing the spread of the distribution, more specifically
the spread away from the mean.



Chapter 2 2.2 DISCRETE RANDOM VARIABLES 14

Definition 2.16 Variance

The variance of a discrete random variable X is

σ2 = V(X) = E[(X− µ)2] =
∞

∑
i=1

(xi − µ)2 f (xi), (2-17)

where xi is the outcome value and f (xi) is the pdf of the ith outcome value.
The standard deviation σ is the square root of the variance.

The variance is the expected value (i.e. average (weighted by probabilities)) of
the squared distance between the outcome and the mean value.

Remark 2.17

Notice that the variance cannot be negative.

The standard deviation is measured on the same scale (same units) as the ran-
dom variable, which is not case for the variance. Therefore the standard de-
viation can much easier be interpreted, when communicating the spread of a
distribution.

Consider how the expected value is calculated in Equation (2-15).
One can think of the squared distance as a new random variable
that has an expected value which is the variance of X.

Example 2.18

The variance of rolls with the fair dice is

σ2
xfair = E[(Xfair − µXfair)2]

= (1− 3.5)2 1
6
+ (2− 3.5)2 1

6
+ (3− 3.5)2 1

6
+ (4− 3.5)2 1

6
+ (5− 3.5)2 1

6
+ (6− 3.5)2 1

6

=
70
24

≈ 2.92.

It was seen in Chapter 1, that after an experiment has been carried out n times
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the sample variance can be calculated as defined previously by

s2 = σ̂2 =
1

n− 1

n

∑
i=1

(xi − x̄)2, (2-18)

and hence thereby also sample standard deviation s.

Again our intuition tells us that the statistic (e.g. sample variance), should in
some sense converge to the true variance - this is indeed the case and the we
call the sample variance a central estimator for the true underlying variance.
This convergence will be quantified for a special case in Chapter 3.

The sample variance is calculated by:

• Take the sample mean: x̄

• Take the distance for each sample: xi − x̄

• Finally, take the average of the squared distances (using n−
1 in the denominator, see Chapter 1)

Example 2.19 Simulate and estimate the variance

Return to the simulations. First calculate the sample variance from n rolls of a fair
dice

## Simulate a fair dice and calculate the sample variance

## Number of realizations
n <- 30
## Simulate
xFair <- sample(1:6, size=n, replace=TRUE)
## Calculate the distance for each sample to the sample mean
distances <- xFair - mean(xFair)
## Calculate the average of the squared distances
sum(distances^2)/(n-1)

[1] 2.764

## Or use the built in function
var(xFair)

[1] 2.764

Let us then try to play with variance in the dice example. Let us now consider a
four-sided dice. The pdf is
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x 1 2 3 4
FXfairFour(x) 1

4
1
4

1
4

1
4

Plot the pdf for both the six-sided dice and the four-sided dice

## Plot the pdf of the six-sided dice and the four-sided dice
plot(rep(1/6,6), type="h", col="red")
plot(rep(1/4,4), type="h", col="blue")
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## Calculate the means and variances of the dices

## The means
muXSixsided <- sum((1:6)*1/6) # Six-sided
muXFoursided <- sum((1:4)*1/4) # Four-sided
## The variances
sum((1:6-muXSixsided)^2*1/6)

[1] 2.917

sum((1:4-muXFoursided)^2*1/4)

[1] 1.25

Which dice outcome has the highest variance? is that as you had antici-
pated?
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2.3 Discrete distributions

In this section the discrete distributions included in the material are presented.
See the overview of all distributions in the collection of formulas Section A.2.1.

In R, implementations of many different distributions are available. For each
distribution at least the following is available

• The pdf is available by preceding with ’d’, e.g. for the binomial distribu-
tion dbinom

• The cdf is available by preceding with ’p’, e.g. pbinom

• The quantiles by preceding with ’q’, e.g. qbinom

• Random number generation by preceding with ’r’ e.g. rbinom

See for example the help with ?dbinom in R and see the names of all the R func-
tions in the overview A.2.1. They are demonstrated below in this section for the
discrete and later for the continuous distributions, see them demonstrated for
the normal distribution in Example 2.45.

2.3.1 Binomial distribution

The binomial distribution is a very important discrete distribution and appears
in many applications, it is presented in this section. In statistics it is typically
used for proportions as explained in Chapter 7.

If an experiment has two possible outcomes (e.g. failure or success, no or yes, 0
or 1) and is repeated more than one time, then the number of successes may be
binomial distributed. For example the number of heads obtained after a certain
number of flips with a coin. Each repetition must be independent. In relation to
random sampling this corresponds to successive draws with replacement (think
of drawing notes from a hat, where after each draw the note is put back again,
i.e. the drawn number is replaced again).
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Definition 2.20 Binomial distribution

Let the random variable X be binomial distributed

X ∼ B(n, p), (2-19)

where n is number of independent draws and p is the probability of a suc-
cess in each draw.
The binomial pdf describes probability of obtaining x successes

f (x; n, p) = P(X = x) =

(
n
x

)
px(1− p)n−x, (2-20)

where (
n
x

)
=

n!
x!(n− x)!

, (2-21)

is the number of distinct sets of x elements which can be chosen from a set
of n elements. Remember that n! = n · (n− 1) · . . . · 2 · 1.

Theorem 2.21 Mean and variance

The mean of a binomial distributed random variable is

µ = np, (2-22)

and the variance is

σ2 = np(1− p). (2-23)

Actually this can be proved by calculating the mean using Definition 2.13 and
the variance using Definition 2.16.
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Example 2.22 Simulation with a binomial distribution

The binomial distribution for 10 flips with a coin describe probabilities of getting x
heads (or equivalently tails)

## Simulate a binomial distributed experiment

## Number of flips
nFlips <- 10
## The possible outcomes are (0,1,...,nFlips)
xSeq <- 0:nFlips
## Use the dbinom() function which returns the pdf, see ?dbinom
pdfSeq <- dbinom(xSeq, size=nFlips, prob=1/2)
## Plot the density
plot(xSeq, pdfSeq, type="h")
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Example 2.23 Simulate 30 successive dice rolls

In the previous examples successive rolls of a dice was simulated. If a random vari-
able which counts the number of sixes obtained Xsix is defined, it follows a binomial
distribution

## Simulate 30 successive dice rolls
Xfair <- sample(1:6, size=30, replace=TRUE)
## Count the number sixes obtained
sum(Xfair==6)

[1] 9

## This is equivalent to
rbinom(1, size=30, prob=1/6)

[1] 7

2.3.2 Hypergeometric distribution

The hypergeometric distribution describes number of successes from successive
draws without replacement.
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Definition 2.24 Hypergeometric distribution

Let the random variable X be the number of successes in n draws without
replacement. Then X follows the hypergeometric distribution

X ∼ H(n, a, N), (2-24)

where a is the number of successes in the N elements large population. The
probability of obtaining x successes is described by the hypergeometric pdf

f (x; n, a, N) = P(X = x) =
(a

x)(
N−a
n−x)

(N
n )

. (2-25)

The notation (
a
b

)
=

a!
b!(a− b)!

, (2-26)

represents the number of distinct sets of b elements which can be chosen
from a set of a elements.

Theorem 2.25 Mean and variance

The mean of a hypergeometric distributed random variable is

µ = n
a
N

, (2-27)

and the variance is

σ2 = n
a(N − a)

N2
N − n
N − 1

. (2-28)

Example 2.26 Lottery probabilities using the hypergeometric dis-
tribution

A lottery drawing is a good example where the hypergeometric distribution can be
applied. The numbers from 1 to 90 are put in a bowl and randomly drawn without
replacement (i.e. without putting back the number when it has been drawn). Say
that you have the sheet with 8 numbers and want to calculate the probability of
getting all 8 numbers in 25 draws.
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## The probability of getting x numbers of the sheet in 25 drawings

## Number of successes in the population
a <- 8
## Size of the population
N <- 90
## Number of draws
n <- 25
## Plot the pdf, note: parameters names are different in the R function
plot(0:8, dhyper(x=0:8,m=a,n=N-a,k=n), type="h")
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n = 25
a = 8
N = 90

2.3.3 Poisson distribution

The Poisson distribution describes the probability of a given number of events
occurring in a fixed interval if these events occur with a known average rate
and independently of the distance to the last event. Often it is events in a time
interval, but can as well be counts in other intervals, e.g. of distance, area or
volume. In statistics the Poisson distribution is usually applied for analyzing
for example counts of: arrivals, traffic, failures and breakdowns.
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Definition 2.27 Poisson distribution

Let the random variable X be Poisson distributed

X ∼ Po(λ), (2-29)

where λ is the rate (or intensity): the average number of events per interval.
The Poisson pdf describes the probability of x events in an interval

f (x; λ) =
λx

x!
e−λ. (2-30)

Theorem 2.28 Mean and variance

A Poisson distributed random variable X has exactly the rate λ as the mean

µ = λ, (2-31)

and variance

σ2 = λ. (2-32)

Example 2.29

The Poisson distribution is typically used to describe phenomena such as:

• the number radioactive particle decays per time interval, i.e. the number of
clicks per time interval of a Geiger counter

• calls to a call center per time interval (λ does vary over the day)

• number of mutations in a given stretch of DNA after a certain amount of radi-
ation

• goals scored in a soccer match

One important feature is that the rate can be scaled, such that probabilities of
occurrences in other interval lengths can be calculated. Usually the rate is de-
noted with the interval length, for example the hourly rate is denoted as λhour
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and can be scaled to the minutely rate by

λminute =
λhour

60
, (2-33)

such the probabilities of x events per minute can be calculated with the Poisson
pdf with rate λminute.

Example 2.30 Rate scaling

You are enjoying a soccer match. Assuming that the scoring of goals per match in
the league is Poisson distributed and on average 3.4 goals are scored per match.
Calculate the probability that no goals will be scored while you leave the match for
10 minutes.

Let λ90minutes = 3.4 be goals per match and scale this to the 10 minute rate by

λ10minutes =
λ90minutes

9
=

3.4
9

. (2-34)

Let X be the number of goals in 10 minute intervals and use this to calculate the
probability of no events a 10 minute interval by

P(X = 0) = f (0, λ10minutes) ≈ 0.685, (2-35)

which was found with the R code

## Probability of no goals in 10 minutes

## The Poisson pdf
dpois(x=0, lambda=3.4/9)

[1] 0.6854
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Example 2.31 Poisson distributed random variable

Simulate a Poisson distributed random variable to see the Poisson distribution

## Simulate a Poisson random variable

## The mean rate of events per interval
lambda <- 4
## Number of realizations
n <- 1000
## Simulate
x <- rpois(n, lambda)
## Plot the empirical pdf
plot(table(x)/n)
## Add the pdf to the plot
lines(0:20, dpois(0:20,lambda), type="h", col="red")
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2.4 Continuous random variables

If an outcome of an experiment takes a continuous value, for example: a dis-
tance, a temperature, a weight, etc., then it is represented by a continuous ran-
dom variable.

Definition 2.32 Density and probabilities

The pdf of a continuous random variable X is a non-negative function for all
possible outcomes

f (x) ≥ 0 for all x, (2-36)

and has an area below the function of one∫ ∞

−∞
f (x)dx = 1. (2-37)

It defines the probability of observing an outcome in the range from a to b
by

P(a < X ≤ b) =
∫ b

a
f (x)dx. (2-38)

For the discrete case the probability of observing an outcome x is equal to the
pdf of x, but this is not the case for a continuous random variable, where

P(X = x) = P(x < X ≤ x) =
∫ x

x
f (u)du = 0, (2-39)

i.e. the probability for a continuous random variable to be realized at a single
number P(X = x) is zero.

The plot in Figure 2.1 shows how the area below the pdf represents the proba-
bility of observing an outcome in a range. Note that the normal distribution is
used here for the examples, it is introduced in Section 2.5.2.
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Figure 2.1: The probability of observing the outcome of X in the range between
a and b is the area below the pdf spanning the range, as illustrated with the
colored area.

Definition 2.33 Distribution

The cdf of a continuous variable is defined by

F(x) = P(X ≤ x) =
∫ x

−∞
f (u)du, (2-40)

and has the properties (in both the discrete and continuous case): the cdf is
non-decreasing and

lim
x→−∞

F(x) = 0 and lim
x→∞

F(x) = 1. (2-41)

The relation between the cdf and the pdf is

P(a < X ≤ b) = F(b)− F(a) =
∫ b

a
f (x)dx, (2-42)

as illustrated in Figures 2.1 and 2.2.

Also as the cdf is defined as the integral of the pdf, the pdf becomes the derivative
of the cdf

f (x) =
d

dx
F(x) (2-43)
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Figure 2.2: The probability of observing the outcome of X in the range between
a and b is the distance between F(a) and F(b).

2.4.1 Mean and Variance

Definition 2.34 Mean and variance

For a continuous random variable the mean or expected value is

µ = E(X) =
∫ ∞

−∞
x f (x)dx, (2-44)

hence similar as for the discrete case the outcome is weighted with the pdf.
The variance is

σ2 = E[(X− µ)2] =
∫ ∞

−∞
(x− µ)2 f (x)dx, (2-45)

The differences between the discrete and the continuous case can be summed
up in two points:

• In the continuous case integrals are used, in the discrete case sums are
used.

• In the continuous case the probability of observing a single value is always
zero. In the discrete case it can be positive or zero.
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2.5 Continuous distributions

2.5.1 Uniform distribution

A random variable following the uniform distribution has equal density at any
value within a defined range.

Definition 2.35 Uniform distribution

Let X be a uniform distributed random variable

X ∼ U(α, β), (2-46)

where α and β defines the range of possible outcomes. It has the pdf

f (x) =

{
1

β−α for x ∈ [α, β]

0 otherwise
. (2-47)

The uniform cdf is

F(x) =


0 for x < α
x−α
β−α for x ∈ [α, β)

1 for x ≥ β

. (2-48)

In Figure 2.3 the uniform pdf and cdf are plotted.

Theorem 2.36 Mean and variance of the uniform distribution

The mean of a uniform distributed random variable X is

µ =
1
2
(α + β), (2-49)

and the variance is

σ2 =
1

12
(β− α)2. (2-50)
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Figure 2.3: The uniform distribution pdf and cdf.

2.5.2 Normal distribution

The most famous continuous distribution is the normal distribution for many
reasons. Often it is also called the Gaussian distribution. The normal distribu-
tion appears naturally for many phenomena and is therefore used in extremely
many applications, which will be apparent in later chapters of the book.

Definition 2.37 Normal distribution

Let X be a normal distributed random variable

X ∼ N(µ, σ2), (2-51)

where µ is the mean and σ2 is the variance (remember that the standard
deviation is σ). Note that the two parameters are actually the mean and
variance of X.
It follows the normal pdf

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2-52)

and the normal cdf

F(x) =
1

σ
√

2π

∫ x

−∞
e−

(u−µ)2

2σ2 du. (2-53)



Chapter 2 2.5 CONTINUOUS DISTRIBUTIONS 31

Theorem 2.38 Mean and variance

The mean of a Normal distributed random variable is

µ, (2-54)

and the variance is

σ2. (2-55)

Hence simply the two parameters defining the distribution.

Example 2.39 The normal pdf

Example: Let us play with the normal pdf

## Play with the normal distribution

## The mean and standard deviation
muX <- 0
sigmaX <- 1
## A sequence of x values
xSeq <- seq(-6, 6, by=0.1)
##
pdfX <- 1/(sigmaX*sqrt(2*pi)) * exp(-(xSeq-muX)^2/(2*sigmaX^2))
## Plot the pdf
plot(xSeq, pdfX, type="l", xlab="$x$", ylab="f(x)")
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Try with different values of the mean and standard deviation. Describe how
this change the position and spread of the pdf?

Theorem 2.40 Linear combinations of normal random variables

Let X1, . . . , Xn be independent normal random variables, then any linear
combination of X1, . . . , Xn will follow a normal distribution, with mean and
variance given in Theorem 2.56.

Use the mean and variance identities introduced in Section 2.7 to find the mean
and variance of the linear combination as exemplified here:

Example 2.41

Consider two normal distributed random variables

X1 ∼ N(µX1 , σ2
X1
) and X2 ∼ N(µX2 , σ2

X2
). (2-56)

The difference

Y = X1 − X2, (2-57)

is normal distributed

Y ∼ N(µY, σ2
Y), (2-58)

where the mean is

µY = µX1 − µX2 , (2-59)

and

σ2
Y = σ2

X1
+ σ2

X2
, (2-60)

where the mean and variance identities introduced in Section 2.7 have been used.

Standard normal distribution
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Definition 2.42 Standard normal distribution

The standard normal distribution is the normal distribution with zero mean
and unit variance

Z ∼ N(0, 1), (2-61)

where Z is the standardized normal random variable.

Historically before the widespread use of computers the standardized random
variables were used a lot, since it was not possible to easily evaluate the pdf and
cdf, instead they were looked up in tables for the standardized distributions.
This was smart since transformation into standardized distributions requires
only a few simple operations.

Theorem 2.43 Transformation to the standardized normal random
variable

A normal distributed random variable X can be transformed into a stan-
dardized normal random variable by

Z =
X− µ

σ
. (2-62)

Example 2.44 Quantiles in the standard normal distribution

The most used quantiles (or percentiles) in the standard normal distribution are

Percentile 1% 2.5% 5% 25% 75% 95% 97.5% 99%
Quantile 0.01 0.025 0.05 0.25 0.75 0.95 0.975 0.99
Value -2.33 -1.96 -1.64 -0.67 0.67 1.64 1.96 2.33

Note that the values can be considered as standard deviations (i.e. for Z the stan-
dardized normal then σZ = 1), which holds for any normal distribution.

The most used quantiles are marked on the plot
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Note that the units on the x-axis is in standard deviations.

Normal pdf details

In order to get insight into how the normal distribution is formed consider the
following steps. In Figure 2.4 the result of each step is plotted:

1. Take the distance to the mean: x− µ

2. Square the distance: (x− µ)2

3. Make it negative and scale it: −(x−µ)2

(2σ2)

4. Take the exponential: e
−(x−µ)2

(2σ2)

5. Finally, scale it to have an area of one: 1
σ
√

2π
e
−(x−µ)2

(2σ2)
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Figure 2.4: The steps involved in calculating the normal distribution pdf.

Example 2.45 R functions for the normal distribution

In R functions to generate values from many distributions are implemented. For the
normal distribution the following functions are available:
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## Do it for a sequence of x values
xSeq <- c(-3,-2,1,0,1,2,3)
## The pdf
dnorm(xSeq, mean=0, sd=1)

[1] 0.004432 0.053991 0.241971 0.398942 0.241971 0.053991 0.004432

## The cdf
pnorm(xSeq, mean=0, sd=1)

[1] 0.00135 0.02275 0.84134 0.50000 0.84134 0.97725 0.99865

## The quantiles
qnorm(c(0.01,0.025,0.05,0.5,0.95,0.975,0.99), mean=0, sd=1)

[1] -2.326 -1.960 -1.645 0.000 1.645 1.960 2.326

## Generate random normal distributed realizations
rnorm(n=10, mean=0, sd=1)

[1] 0.59716 -0.27049 1.28617 0.06501 -3.13349 -1.09420 -1.16043
[8] 1.04028 0.42958 0.60432

## Calculate the probability that that the outcome of X is between a and b
a <- 0.2
b <- 0.8
pnorm(b) - pnorm(a)

[1] 0.2089

## See more details by running "?dnorm"

Use the functions to make a plot of the normal pdf with marks of the
2.5%, 5%, 95%, 97.5% quantiles.

Make a plot of the normal pdf and a histogram (empirical pdf) of 100 simu-
lated realizations.
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2.5.3 Log-Normal distribution

If a random variable is log-normal distributed then its logarithm is normally
distributed.

Definition 2.46 Log-Normal distribution

A log-normal distributed random variable

X ∼ LN(α, β2), (2-63)

where α is the mean and β2 is the variance of the normal distribution ob-
tained when taking the natural logarithm to X.
The log-normal pdf is

f (x) =
1

x
√

2πβ
e
− (ln x−α)2

2β2 . (2-64)

Theorem 2.47 Mean and variance of log-normal distribution

Mean of the log-normal distribution

µ = eα+β2/2, (2-65)

and variance

σ2 = e2α+β2
(eβ2 − 1). (2-66)

The log-normal distribution occurs in many fields, in particular: biology, fi-
nance and many technical applications.

2.5.4 Exponential distribution

The usual application of the exponential distribution is for describing the length
(usually time) between events which, when counted, follows a Poisson distri-
bution, see Section 2.3.3. Hence the length between events which occur contin-
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uously and independently at a constant average rate.

Definition 2.48 Exponential distribution

Let X be an exponential distributed random variable

X ∼ Exp(λ), (2-67)

where λ is the average rate of events.

It follows the exponential pdf

f (x) =

{
λe−λx for x ≥ 0
0 for x < 0

. (2-68)

Theorem 2.49 Mean and variance of exponential distribution

Mean of an exponential distribution is

µ =
1
λ

, (2-69)

and the variance is

σ2 =
1

λ2 . (2-70)
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Example 2.50 Exponential distributed time intervals

Simulate a so-called Poisson process, which has exponential distributed time inter-
val between events

## Simulate exponential waiting times

## The rate parameter: events per time
lambda <- 4
## Number of realizations
n <- 1000
## Simulate
x <- rexp(n, lambda)
## The empirical pdf
hist(x, probability=TRUE)
## Add the pdf to the plot
curve(dexp(xseq,lambda), xname="xseq", add=TRUE, col="red")
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Furthermore check that by counting the events in fixed length intervals that they
follow a Poisson distribution.
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## Check the relation to the Poisson distribution
## by counting the events in each interval

## Sum up to get the running time
xCum <- cumsum(x)
## Use the hist function to count in intervals between the breaks,
## here 0,1,2,...
tmp <- hist(xCum, breaks=0:ceiling(max(xCum)))
## Plot the discrete empirical pdf
plot(table(tmp$counts)/length(tmp$counts))
## Add the Poisson pdf to the plot
lines(0:20, dpois(0:20,lambda), type="h", col="red")
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Figure 2.5: Exponential distributed time intervals between events forms a so-
called Poisson process.

2.6 Simulation of random variables

The basic concept of simulation was introduced in Section 2.2.1 and we have al-
ready applied the in-built functions in R for generating random numbers from
any implemented distribution, see how in Section 2.3.1. In this section it is ex-
plained how realizations of a random variable can be generated from any prob-
ability distribution – it is the same technique for both discrete and continuous
distributions.

Basically, a computer obviously cannot create a result/number, which is ran-
dom. A computer can give an output as a function of an input. (Pseudo) ran-
dom numbers from a computer are generated from a specially designed algo-
rithm - called a random number generator, which once started can make the
number xi+1 from the number xi. The algorithm is designed in such a way that
when looking at a sequence of these values, in practice one cannot tell the dif-
ference between them and a sequence of real random numbers. The algorithm
needs a start input, called the “seed”, as explained above Remark 2.12. Usually,
you can manage just fine without having to worry about the seed issue since
the program itself finds out how to handle it appropriately. Only if you want
to be able to recreate exactly the same results you need to set seed value. For
details about this and the random number generators used in R, type ?Random.

Actually, a basic random number generator typically generates (pseudo) ran-
dom numbers between 0 and 1 in the sense that numbers in practice follow the
uniform distribution on the interval 0 to 1, see Section 2.35. Actually, there is a
simple way how to come from the uniform distribution to any kind of distribu-
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tion:

Theorem 2.51

If U ∼ Uniform(0, 1) and F is a distribution function for any probability
distribution, then F−1(U) follow the distribution given by F

Recall, that the distribution function F in R is given by the p versions of the
distributions, while F−1 is given by the q versions.

Example 2.52 Random numbers in R

We can generate 100 normally distributed N(2, 32) numbers similarly the following
two ways:

## Generate 100 normal distributed values
rnorm(100, mean=2, sd=3)
## Similarly, generate 100 uniform distributed values from 0 to 1 and
## put them through the inverse normal cdf
qnorm(runif(100), mean=2, sd=3)

Example 2.53 Simulating the exponential distribution

Consider the exponential distribution with λ = 1/β = 1/2, that is, with density
function

f (x) = λe−λx,

for x > 0 and 0 otherwise. The distribution function is

F(x) =
∫ x

0
f (t)dt = 1− e−0.5x.

The inverse of this distribution function can be found by solving

u = 1− e−0.5x ⇔ x = −2 log(1− u).

So if random numbers U ∼ Uniform(0, 1) then −2 log(1−U) follows the exponen-
tial distribution with λ = 1/2 (and β = 2). We confirm this in R here:
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## Three equivalent ways of simulating the exponential distribution
## with lambda=1/2
re1 <- -2*log(1-runif(10000))

re2 <- qexp(runif(10000), 1/2)

re3 <- rexp(10000, 1/2)

## Check the means and variances of each
c(mean(re1), mean(re2), mean(re3))

[1] 2.007 1.987 1.996

c(var(re1), var(re2), var(re3))

[1] 3.948 3.903 3.871

This can be illustrated by plotting the distribution function (cdf) for the exponential
distribution with λ = 1/2 and 5 random outcomes
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But since R has already done all this for us, we do not really need this as long as
we only use distributions that have already been implemented in R. One can use
the help function for each function, for example. ?rnorm, to check exactly how
to specify the parameters of the individual distributions. The syntax follows
exactly what is used in p, d and q versions of the distributions.
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2.7 Identities for the mean and variance

Rules for calculation of the mean and variance of linear combinations of in-
dependent random variables are introduced here. They are valid for both the
discrete and continuous case.

Theorem 2.54 Mean and variance of linear functions

Let Y = aX + b then

E(Y) = E(aX + b) = a E(X) + b, (2-71)

and

V(Y) = V(aX + b) = a2 V(X). (2-72)

Random variables are often scaled (i.e. aX) for example when shifting units:

Example 2.55

The mean of a bike shops sale is 100 bikes per month and varies with a standard
deviation of 15. They earn 200 Euros per bike. What is the mean and standard
deviation of their earnings per month?

Let X be the number of bikes sold per month. On average they sell µX = 100 bikes
per month and it varies with a variance of σ2

X = 225. The shops monthly earnings

Y = 200X,

has then a mean and standard deviation of

µY = E(Y) = E(200X) = 200 E(X) = 200 · 100 = 20000 Euro/month,

σY =
√

V(Y) =
√

V(200X) =
√

2002 V(X) =
√

40000 · 225 = 3000 Euro/month.
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Theorem 2.56 Mean and variance of linear combinations

The mean of a linear combination of independent random variables is

E(a1X1 + a2X2 + · · ·+ anXn) = a1 E(X1) + a2 E(X2) + · · ·+ an E(Xn),
(2-73)

and the variance

V(a1X1 + a2X2 + · · ·+ anXn) = a2
1 V(X1) + a2

2 V(X2) + · · ·+ a2
n V(Xn).

(2-74)

Example 2.57

Lets take a dice example to emphasize an important point. Let Xi represent the
outcome of a roll with a dice with mean µX and standard deviation σX.

Now, consider a scaling of a single roll with a dice, say five times

Yscale = 5X1,

then the mean will scale linearly

E(Yscale) = E(5X1) = 5 E(X1) = 5 µX,

and the standard deviation also scales linearly

σ2
Yscale = V(5X1) = 52 V(X1) = 52 σ2

X ⇔ σYscale = 5 σX.

Whereas for a sum of five rolls

Ysum = X1 + X2 + X3 + X4 + X5,

the mean will similarly scale linearly

E(Ysum) = E(X1 + X2 + X3 + X4 + X5)

= E(X1) + E(X2) + E(X3) + E(X4) + E(X5)

= 5 µX,

however the standard deviation will increase only with the square root

σ2
Ysum = V(X1 + X2 + X3 + X4 + X5)

= V(X1) + V(X2) + V(X3) + V(X4) + V(X5)

= 5 σ2
X ⇔

σYsum =
√

5 σX.
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This is simply because when applying the sum to many random outcomes, then
the high and low outcomes will even out each other, such that the variance will be
smaller for a sum than for a scaling.
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2.8 Covariance and correlation

In this chapter we have discussed mean and variance (or standard deviation),
and the relation to the sample mean and sample variance, see Section 2.2.2. In
Chapter 1 Section 1.4.3 we discussed the sample covariance and sample correla-
tion, these two measures also have theoretical justification, namely covariance
and correlation, which we will discuss in this section. We start by the definition
of covariance.

Definition 2.58 Covariance

Let X and Y be two random variables, then the covariance between X and
Y, is

Cov(X, Y) = E[(X− E[X])(Y− E[Y])] . (2-75)

Remark 2.59

It follows immediately from the definition that Cov(X, X) = V(X) and
Cov(X, Y) = Cov(Y, X).

An important concept in statistics is independence (see Section 2.9 for a formal
definition). We often assume that realizations (random variables) are indepen-
dent. If two random variables are independent then their covariance will be
zero, the reverse is however not necessarily true (see also the discussion on
sample correlation in Section 1.4.3).

The following calculation rule apply to covariance between two random vari-
ables X and Y:

Theorem 2.60 Covariance between linear combinations

Let X and Y be two random variables, then

Cov(a0 + a1X + a2Y, b0 + b1X + b2Y) = a1b1 V(X) + a2b2 V(Y) + (a1b2 + a2b1)Cov(X, Y).
(2-76)
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Proof

Let Z1 = a0 + a1X + a2Y and Z2 = b0 + b1X + b2Y then

Cov(Z1, Z2) = E[(a1(X− E[X]) + a2(Y− E[Y]))(b1(X− E[X]) + b2(Y− E[Y]))]

= E[a1(X− E[X])b1(X− E[X])] + E[a1(X− E[X])b2(Y− E[Y])]+

E[a2(Y− E[Y])b1(X− E[X])] + E[a2(Y− E[Y])b2(Y− E[Y])]

= a1b1 V(X) + a2b2 V(Y) + (a1b2 + a2b2)Cov(X, Y). (2-77)

�

Example 2.61

Let X ∼ N(3, 22) and Y ∼ N(2, 1) and the covariance between X and Y given by
Cov(X, Y) = 1. What is the variance of the random variable Z = 2X−Y?

V(Z) = Cov[2X−Y, 2X−Y] = 22 V(X) + V(Y)− 4 Cov(X, Y)

= 2222 + 1− 4 = 13.

We have already seen in Section 1.4.3 that the sample correlation measures the
observed degree of linear dependence between two random variables – calcu-
lated from samples observed on the same observational unit e.g. height and
weight of persons. The theoretical counterpart is the correlation between two
random variables – the true linear dependence between the two variables:

Definition 2.62 Correlation

Let X and Y be two random variables with V(X) = σ2
x , V(Y) = σ2

y , and
Cov(X, Y) = σxy, then the correlation between X and Y is

ρxy =
σxy

σxσy
. (2-78)

Remark 2.63

The correlation is a number between -1 and 1.
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Example 2.64

Let X ∼ N(1, 22) and ε ∼ N(0, 0.52) be independent random variables, find the
correlation between X and Z = X + ε.

The variance of Z is

V(Z) = V(X + ε) = V(X) + V(ε) = 4 + 0.25 = 4.25.

The covariance between X and Z is

Cov(X, Z) = Cov(X, X + ε) = V(X) = 4,

and hence

ρxz =
4√

4.25 · 4
= 0.97.
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2.9 Independence of random variables

In statistics the concept of independence is very important, and in order to
give a formal definition of independence we will need the definition of two-
dimensional random variables. The probability density function of a two-dimensional
discrete random variable, called the joint probability density function, is,

Definition 2.65 Joint pdf of two-dimensional discrete random vari-
ables

The pdf of a two-dimensional discrete random variable [X, Y] is

f (x, y) = P(X = x, Y = y), (2-79)

with the properties

f (x, y) ≥ 0 for all (x, y), (2-80)

∑
all x

∑
all y

f (x, y) = 1. (2-81)

Remark 2.66

P(X = x, Y = y) should be read: the probability of X = x and Y = y.

Example 2.67

Imagine two throws with an fair coin: the possible outcome of each throw is either
head or tail, which will be given the values 0 and 1 respectively. The complete set of
outcomes is (0,0), (0,1), (1,0), and (1,1) each with probability 1/4. And hence the pdf
is

f (x, y) =
1
4

; x = {0, 1}, y = {0, 1},

further we see that
1

∑
x=0

1

∑
y=0

f (x, y) =
1

∑
x=0

( f (x, 0) + f (x, 1)) = f (0, 0) + f (0, 1) + f (1, 0) + f (1, 1)

= 1.
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The formal definition of independence for a two dimensional discrete random
variable is:

Definition 2.68 Independence of discrete random variables

Two discrete random variables X and Y are said to be independent if and
only if

P(X = x, Y = y) = P(X = x)P(Y = y). (2-82)

Example 2.69

Example 2.67 is an example of two independent random variables, to see this write
the probabilities

P(X = 0) =
1

∑
y=0

f (0, y) =
1
2

,

P(X = 1) =
1

∑
y=0

f (1, y) =
1
2

.

similarly P(Y = 0) = 1
2 and P(Y = 1) = 1

2 , now we see that P(X = x)P(Y = y) = 1
4

for all possible x and y, and hence

P(X = x)P(Y = y) = P(X = x, Y = y) =
1
4

.

Example 2.70

Now imagine that for the second throw we don’t see the outcome of Y, but only
observe the sum of X and Y, denote it by

Z = X + Y.

Lets find out if X and Z are independent. In this case the for all outcomes (0, 0),
(0, 1), (1, 1), (1, 2) the joint pdf is

P(X = 0, Z = 0) = P(X = 0, Z = 1) = P(X = 1, Z = 1) = P(X = 1, Z = 2) =
1
4

.

The pdf for each variable is: for X

P(X = 0) = P(X = 1) =
1
2

,
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and for Z

P(Z = 0) = P(Z = 2) =
1
4

and P(Z = 1) =
1
2

,

thus for example for the particular outcome (0, 0)

P(X = 0)P(Z = 0) =
1
2
· 1

4
=

1
8
6= 1

4
= P(X = 0, Z = 0),

the pdf s are not equal and hence we see that X and Z are not independent.

Remark 2.71

In the example above it is quite clear that X and Z cannot be independent.
In real applications we do not know exactly how the outcomes are realized
and therefore we will need to assume independence (or test it).

To be able to define independence of continuous random variables, we will need
the pdf of a two-dimensional random variable:

Definition 2.72 Pdf of two dimensional continous random vari-
ables

The pdf of a two-dimensional continous random variable [X, Y] is a function
f (x, y) from R2 into R+ with the properties

f (x, y) ≥ 0 for all (x, y), (2-83)∫ ∫
f (x, y)dxdy = 1. (2-84)

Just as for one-dimensional random variables the probability interpretation is
in form of integrals

P
(
(X, Y) ∈ A

)
=
∫

A
f (x, y)dxdy, (2-85)

where A is an area.
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Example 2.73 Bivariate normal distribution

The most important two-dimensional distribution is the bivariate normal distribu-
tion

f (x1, x2) =
1

2π
√
|Σ|

e−
1
2 (x−µ)TΣ−1(x−µ)

=
1

2π
√

σ11σ22 − σ2
12

e
− σ2

22(x1−µ1)
2+σ22(x2−µ2)

2−2σ12(x1−µ1)(x2−µ2)

2(σ11σ22−σ2
12) ,

where x = (x1, x2), and µ = [E(X1), E(X2)], and Σ is the so-called variance-
covariance matrix with elements (Σ)ij = σij = Cov(Xi, Xj), note that σ12 = σ21,
| · | is the determinant, and Σ−1 is the inverse of Σ.

Definition 2.74 Independence of continous random variables

Two continous random variables X and Y are said to be independent if

f (x, y) = f (x) f (y). (2-86)

We list here some properties of independent random variables.

Theorem 2.75 Properties of independent random variables

If X and Y are independent then

E(XY) = E(X)E(Y), (2-87)

and

Cov(X, Y) = 0. (2-88)

Let X1, . . . , Xn be independent and identically distributed random variables
then

Cov(X, Xi − X) = 0. (2-89)
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Proof

E(XY) =
∫ ∫

xy f (x, y)dxdy =
∫ ∫

xy f (x) f (y)dxdy

=
∫

x f (x)dx
∫

y f (y)dy = E(X)E(Y)
(2-90)

Cov(X, Y) = E[(X− E(X))(Y− E(Y))]

= E[XY]− E[E(X)Y]− E[X E(Y)] + E(X)E(Y)

= 0.

(2-91)

Cov(X, Xi − X) = Cov(X, Xi)−Cov(X, X)

=
1
n

σ2 − 1
n2 Cov

(
∑ Xi, ∑ Xi

)
=

1
n

σ2 − 1
n2 nσ2 = 0.

(2-92)

�

Remark 2.76

Note that Cov(X, Y) = 0 does not imply that X and Y are independent.
However, if X and Y follow a bivariate normal distribution, then if X and Y
are uncorrelated then they are also independent.
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2.10 Functions of normal random variables

This section will cover some important functions of a normal random variable.
In general the question of how an arbitrary function of a random variable is dis-
tributed cannot be answered on closed form (ı.e. directly and exactly calculated)
– for answering such questions we must use simulation as a tool, as covered de-
tails in Chapter 4. We have already discussed simulation as a learning tool,
which will also be used in this section.

The simplest function we can think of is a linear combination of normal random
variables, which we from Theorem 2.40 know will follow a normal distribution.
The mean and variance of this normal distribution can be calculated using the
identities given in Theorem 2.56.

Remark 2.77

Note that combining Theorems 2.40 and 2.75, and Remark 2.76 imply that X
and Xi − X are independent.

In addition to the result given above we will cover three additional distribu-
tions: χ2-distribution, t-distribution and the F-distribution, which are all very
important for the statistical inference covered in the following chapters.
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2.10.1 The χ2-distribution

The χ2-distribution (chi-square) is defined by:

Definition 2.78

Let X be χ2 distributed, then its pdf is

f (x) =
1

2
ν
2 Γ
(

ν
2

) x
ν
2−1e−

x
2 ; x ≥ 0, (2-93)

where Γ
(

ν
2

)
is the Γ-function and ν is the degrees of freedom.

An alternative definition (here formulated as a theorem) of the χ2-distribution
is:

Theorem 2.79

Let Z1, . . . , Zνbe independent random variables following the standard nor-
mal distribution, then

ν

∑
i=1

Z2
i ∼ χ2(ν). (2-94)

We will omit the proof of the theorem as it requires more probabilty calculus
than covered here. Rather a small example that illustrates how the theorem can
be checked by simulation:
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Example 2.80 simulation of χ2-distribution

## Simulate 10 realizations from a standard normal distributed variable
n <- 10
rnorm(n)
## Now repeat this 200 times and calculate the sum of squares each time
## Note: the use of the function replicate: it repeats the
## expression in the 2nd argument k times, see ?replicate
k <- 200
x <- replicate(k, sum(rnorm(n)^2))
## Plot the epdf of the sums and compare with the theoretical chisquare pdf
par(mfrow=c(1,2))
hist(x, freq=FALSE)
curve(dchisq(xseq,df=n), xname="xseq", add=TRUE, col="red")
## and the ecdf compared to the cdf
plot(ecdf(x))
curve(pchisq(xseq,df=n), xname="xseq", add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.
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Theorem 2.81

Given a sample of size n from the normal distributed random variables Xi
with variance σ2, then the sample variance S2 (viewed as random variable)
can be transformed into

χ2 =
(n− 1)S2

σ2 , (2-95)

which follows the χ2-distribution with degrees of freedom ν = n− 1.

Proof

Start by rewriting the expression

(n− 1)S2

σ2 =
n

∑
i=1

(
Xi − X

σ

)2

=
n

∑
i=1

(
Xi − µ + µ− X

σ

)2

=
n

∑
i=1

(
Xi − µ

σ

)2

+
n

∑
i=1

(
X− µ

σ

)2

− 2
n

∑
i=1

(X− µ)(Xi − µ)

σ2

=
n

∑
i=1

(
Xi − µ

σ

)2

+ n
(

X− µ

σ

)2

− 2n
(

X− µ

σ

)2

=
n

∑
i=1

(
Xi − µ

σ

)2

−
(

X− µ

σ/
√

n

)2

,

(2-96)

we know that Xi−µ
σ ∼ N(0, 1) and X−µ

σ/
√

n ∼ N(0, 1), and hence the left hand side is a

χ2(n) distributed random variable minus a χ2(1) distributed random variable (also
X and S2 are independent, see Theorems 2.75, and 2.40, and Remark 2.76). Hence
the left hand side must be χ2(n− 1).

�

If someone claims that a sample comes from a specific normal distribution (i.e.
Xi ∼ N(µ, σ2), then we can examine probabilities of specific outcomes of the
sample variance. Such calculation will be termed hypethesis test in later chap-
ters.
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Example 2.82 Milk dose machines

A manufacture of machines for dosing milk claims that their machines can dose with
a precision defined by the normal distribution with a standard deviation less than
2% of the dose volume in the operation range. A sample of n = 20 observations was
taken to check if the precision was as claimed. The sample standard deviation was
calculated to s = 0.03.

Hence the claim is that σ ≤ 0.02, thus we want to answer the question: if σ = 0.02
(i.e. the upper limit of the claim), what is then the probability of getting the sampling
deviation s ≥ 0.03?

## Chi-square milk dosing precision

## The sample size
n <- 20
## The claimed deviation
sigma <- 0.02
## The observed sample standard deviation
s <- 0.03
## Calculate the chi-square statistic
chiSq <- (n-1)*s^2 / sigma^2
## Use the cdf to calculate the probability of getting the observed
## sample standard deviation or higher
1 - pchisq(chiSq, df=n-1)

[1] 0.001402

It seems very unlikely that the standard deviation is below 0.02 since the probability
of obtaining the observed sample standard deviation under this condition is very
small. The probability we just found will be termed a p-value in later chapters - the
p-value a very fundamental in testing of hypothesis.

The probability calculated in the above example will be called the p-value in
later chapters and it is a very fundamental concept in statistics.

Theorem 2.83 Mean and variance

Let X ∼ χ2(ν) then the mean and variance of X is

E(X) = ν; V(X) = 2ν. (2-97)
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We will omit the proof of this theorem, but it is easily checked by a symbolic
calculation software (like e.g. Maple).

Example 2.84

We want to calculate the expected value of the sample variance (S2) based on n
observations with Xi ∼ N(µ, σ2). We have already seen that n−1

σ2 S2 ∼ χ2(n− 1) and
we can therefore write

E(S2) =
σ2

n− 1
n− 1

σ2 E
(
S2)

=
σ2

n− 1
E
(

n− 1
σ2 S2

)
=

σ2

n− 1
(n− 1) = σ2,

and we say that S2 is a central estimator for σ2 (the term estimator is introduced in
Section 3.1.3). We can also find the variance of the estimator

V(S2) =

(
σ2

n− 1

)2

V
(

n− 1
σ2 S2

)
=

σ4

(n− 1)2 2(n− 1) = 2
σ4

n− 1
.

Example 2.85 Pooled variance

Suppose now that we have two different samples (not yet realized) X1, . . . , Xn1 and
Y1, . . . , Yn2 with Xi ∼ N(µ1, σ2) and Yi ∼ N(µ2, σ2) (both i.i.d.). Let S2

1 be the sample
variance based on the X’s and S2

2 be the sample variance based on the Y’s. Now both
S2

1 and S2
2 will be central estimators for σ2, and so will any weighted average of the

type

S2 = aS2
1 + (1− a)S2

2; a ∈ [0, 1].

Now we would like to choose a such that the variance of S2 is as small as possible,
and hence we calculate the variance of S2

V(S2) = a22
σ4

n1 − 1
+ (1− a)22

σ4

n2 − 1

= 2σ4
(

a2 1
n1 − 1

+ (1− a)2 1
n2 − 1

)
.
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In order to find the minimum we differentiate with respect to a

∂ V(S2)

∂a
= 2σ4

(
2a

1
n1 − 1

− 2(1− a)
1

n2 − 1

)
= 4σ4

(
a
(

1
n1 − 1

+
1

n2 − 1

)
− 1

n2 − 1

)
= 4σ4

(
a

n1 + n2 − 2
(n1 − 1)(n2 − 1)

− 1
n2 − 1

)
,

which is zero for

a =
n1 − 1

n1 + n2 − 2
.

In later chapters we will refer to this choice of a as the pooled variance (S2
p), inserting

in (2-98) gives

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2
n1 + n2 − 2

.

Note that S2
p is a weighted (proportional to the number of observations) average

of the sample variances. It can also be shown (you are invited to do this) that
n1+n2−2

σ2 S2
p ∼ χ2(n1 + n2 − 2). Further, note that the assumption of equal variance in

the two samples is crucial in the calculations above.

2.10.2 The t-distribution

The t-distribution is the sampling distribution of the sample mean standardized
with the sample variation. It is valid for all sample sizes, however for larger
sample sizes (n > 30) the difference between the t-distribution and the normal
distribution is very small. Hence for larger sample sizes the normal distribution
is often applied.

Definition 2.86

The t-distribution pdf is

fT(t) =
Γ( ν+1

2 )√
νπ Γ( ν

2)

(
1 + t2

ν

)− ν+1
2 , (2-98)

where ν is the degrees of freedom and Γ() is the Gamma function.
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The relation between normal random variables and χ2-distributed random vari-
ables are given in the following theo:rem

Theorem 2.87

Let Z ∼ N(0, 1) and Y ∼ χ2(ν), then

X =
Z√
Y/ν

∼ t(ν). (2-99)

We will not prove this theorem, but show by an example how this can be illus-
trated by simulation:

Example 2.88 Relation between normal and χ2

## Set simulate parameters
nu <- 8; k <- 200
## Generate the simulated realizations
z <- rnorm(k)
y <- rchisq(k, df=nu)
x <- z/sqrt(y/nu)
## Plot
par(mfrow=c(1,2))
hist(x, freq = FALSE)
curve(dt(xseq, df = nu), xname="xseq", add=TRUE, col="red")
plot(ecdf(x))
curve(pt(xseq, df = nu), xname="xseq", add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

The t-distribution arises when a sample is taken of a normal distributed random
variable, then the sample mean standardized with the sample variance follows
the t-distribution.

Theorem 2.89

Given a sample of normal distributed random variables X1, . . . , Xn, then the
random variable

T =
X− µ

S/
√

n
∼ t(n− 1), (2-100)

follows the t-distribution, where X is the sample mean, µ is the mean of X,
n is the sample size and S is the sample standard deviation.

Proof

Note that X−µ

σ/
√

n ∼ N(0, 1) and (n−1)S2

σ2 ∼ χ2(n− 1) which inserted in Equation (2.87)
gives

T =

X−µ

σ/
√

n√
(n−1)S2

σ2(n−1)

=

X−µ

1/
√

n√
S2

=
X− µ

S/
√

n
∼ t(n− 1).

(2-101)

�

We could also verify this by simulation:
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Example 2.90 Simulation of t-distribution

## Simulate
n <- 8; k <- 200; mu <- 1; sigma <- 2
## Repeat k times the simulation of a normal dist. sample:
## return the values in a (n x k) matrix
x <- replicate(k, rnorm(n, mean=mu, sd=sigma))
xbar <- apply(x, 2, mean)
s <- apply(x, 2, sd)
tobs <- (xbar - mu)/(s/sqrt(n))
## Plot
par(mfrow=c(1,2))
hist(tobs, freq = FALSE)
curve(dt(xseq, df=n-1), xname="xseq", add=TRUE, col="red")
plot(ecdf(tobs))
curve(pt(xseq, df=n-1), xname="xseq", add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

Note that X and S are random variables, since they are the sample mean and
standard deviation of a sample consisting of realizations of X, but the sample is
not taken yet.

Very often samples with only few observations are available. In this case by
assuming normality of the population (i.e. the Xi’s are normal distributed) and
for a some mean µ, the t-distribution can be used to calculate the probability of
obtaining the sample mean in a given range.
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Example 2.91 Electric car driving distance

An electric car manufacture claims that their cars can drive on average 400 km on
a full charge at a specified speed. From experience it is known that this full charge
distance, denote it by X, is normal distributed. A test of n = 10 cars was carried out,
which resulted in a sample mean of x̄ = 382 km and a sample deviation of s = 14.

Now we can use the t-distribution to calculate the probability of obtaining this value
of the sample mean or lower, if their claim about the mean is actually true:

## Calculate the probability of getting the sample mean under the
## conditions that the claim is actually the real mean

## A test of 10 cars was carried out
n <- 10
## The claim is that the real mean is 400 km
muX <- 400
## From the sample the sample mean was calculated to
xMean <- 393
## And the sample deviation was
xSD <- 14
## Use the cdf to calculate the probability of obtaining this
## sample mean or a lower value
pt( (xMean-muX) / (xSD/sqrt(n)), df=n-1)

[1] 0.07415

If we had the same sample mean and sample deviation, how do you think
changing the number of observations will affect the calculated probability?
Try it out.

The t-distribution converges to the normal distribution as the simple size in-
creases. For small sample sizes it has a higher spread than the normal distribu-
tion. For larger sample sizes with n > 30 observations the difference between
the normal and the t-distribution is very small.
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Example 2.92 t-distribution

Generate plots to see how the t-distribution is shaped compared to the normal dis-
tribution.

## Plot the t-distribution for different sample sizes

## First plot the standard normal distribution
curve(dnorm(x), xlim=c(-5,5), xlab="x", ylab="Density")
## Add the t-distribution for 30 observations
curve(dt(x,df=30-1), add=TRUE, col=2)
## Add the t-distribution for 15, 5 and 2 observations
curve(dt(x,df=15-1), add=TRUE, col=3)
curve(dt(x,df=5-1), add=TRUE, col=4)
curve(dt(x,df=2-1), add=TRUE, col=5)
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How does the number of observations affect the shape of the t-distribution
pdf compared to the normal pdf?
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Theorem 2.93 Mean and variance

Let X ∼ t(ν) then the mean and variance of X is

E(X) = 0; ν > 1, (2-102)

V(X) =
ν

ν− 2
; ν > 2. (2-103)

We will omit the proof of this theorem, but it is easily checked with a symbolic
calculation software (like e.g. Maple).

Remark 2.94

For ν ≤ 1 the expectation (and hence the variance) is not defined (the inte-
gral is not absolutely convergent), and for ν ∈ (1, 2] (1 < ν ≤ 2) the variance
is equal ∞. Note that this does not violate the general definition of probabil-
ity density functions.

2.10.3 The F-distribution

The F-distribution is defined by:

Definition 2.95

The F-distribution pdf is

fF(x) =
1

B
( ν1

2 , ν2
2

) (ν1

ν2

) ν1
2

x
ν1
2 −1

(
1 +

ν1

ν2
x
)− ν1+ν2

2

, (2-104)

where ν1 an ν2 are the degrees of freedom and B(·, ·) is the Beta function.

The F-distribution appears as the ratio between two independent χ2-distributed
random variables:



Chapter 2 2.10 FUNCTIONS OF NORMAL RANDOM VARIABLES 68

Theorem 2.96

Let U ∼ χ2(ν1) and V ∼ χ2(ν2), be independent then

F =
U/ν1

V/ν2
∼ F(ν1, ν2). (2-105)

Again we will omit the proof of the theorem and rather show how it can be
visualized by simulation:

Example 2.97 F-distribution

## Simulate
nu1 <- 8; nu2 <- 10; k <- 200
u <- rchisq(k, df=nu1)
v <- rchisq(k, df=nu2)
fobs <- (u/nu1) / (v/nu2)
## Plot
par(mfrow=c(1,2))
hist(fobs, freq = FALSE)
curve(df(x, df1=nu1, df2=nu2), add=TRUE, col="red")
plot(ecdf(fobs))
curve(pf(x, df1=nu1, df2=nu2), add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.
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Theorem 2.98

Let X1, . . . , Xn1 be independent and sampled from a normal distribution
with mean µ1 and variance σ2

1 , further let Y1, . . . , Yn2 be independent and
sampled from a normal distribution with mean µ2 and variance σ2

2 . Then
the statistic

F =
S2

1/σ2
1

S2
2/σ2

2
∼ F(n1 − 1, n2 − 1), (2-106)

follows an F-distribution.

Proof

Note that (n1−1)S2
1

σ2
1
∼ χ2(n1 − 1) and (n2−1)S2

2
σ2

2
∼ χ2(n2 − 1) and hence

(n1−1)S2
1

σ2
1 (n1−1)

(n2−1)S2
2

σ2
2 (n2−1)

=

S2
1

σ2
1

S2
2

σ2
2

∼ F(n1 − 1, n2 − 1). (2-107)

�

We can also illustrate this sample version by simulation:

Example 2.99 Relation between normal and F-distribution

## Simulate
n1 <- 8; n2 <- 10; k <- 200
mu1 <- 2; mu2 <- -1
sigma1 <- 2; sigma2 <- 4
s1 <- replicate(k, sd(rnorm(n1, mean=mu1, sd=sigma1)))
s2 <- replicate(k, sd(rnorm(n2, mean=mu2, sd=sigma2)))
fobs <- (s1^2 / sigma1^2) / (s2^2 / sigma2^2)
## Plot
par(mfrow=c(1,2))
hist(fobs, freq=FALSE)
curve(df(xseq, df1=n1-1, df2=n2-1), xname="xseq", add=TRUE, col="red")
plot(ecdf(fobs))
curve(pf(xseq, df1=n1-1, df2=n2-1), xname="xseq", add=TRUE, col="red")
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In the left plot the empirical pdf is compared to the theoretical pdf and in the right
plot the empirical cdf is compared to the theoretical cdf.

Remark 2.100

Of particular importance in statistics is the case when σ1 = σ2, in this case

F =
S2

1
S2

2
∼ F(n1 − 1, n2 − 1). (2-108)

Theorem 2.101 Mean and variance

Let F ∼ F(ν1, ν2) then the mean and variance of F is

E(F) =
ν2

ν2 − 2
; ν2 > 2, (2-109)

V(F) =
2ν2

2(ν1 + ν2 − 2)
ν1(ν2 − 2)2(ν2 − 4)

; ν2 > 4. (2-110)
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2.11 Exercises

Exercise 2.1 Discrete random variable

a) Let X be a stochastic variable. When running the R-command dbinom(4,10,0.6)
R returns 0.1115, written as:

dbinom(4,10,0.6)

[1] 0.1115

What distribution is applied and what does 0.1115 represent?

b) Let X be the same stochastic variable as above. The following are results
from R:

pbinom(4,10,0.6)

[1] 0.1662

pbinom(5,10,0.6)

[1] 0.3669

Calculate the following probabilities: P(X ≤ 5), P(X < 5), P(X > 4) and
P(X = 5).

c) Let X be a stochastic variable. From R we get:

dpois(4,3)

[1] 0.168

What distribution is applied and what does 0.168 represent?

d) Let X be the same stochastic variable as above. The following are results
from R:
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ppois(4,3)

[1] 0.8153

ppois(5,3)

[1] 0.9161

Calculate the following probabilities: P(X ≤ 5), P(X < 5), P(X > 4) and
P(X = 5).

Exercise 2.2 Course passing proportions

a) If a passing proportion for a course given repeatedly is assumed to be 0.80
on average, and there are 250 students who are taking the exam each time,
what is the expected value, µ and standard deviation, σ, for the number
of students who do not pass the exam for a randomly selected course?

Exercise 2.3 Notes in a box

A box contains 6 notes:

On 1 of the notes there is the number 1
On 2 of the notes there is the number 2
On 2 of the notes there is the number 3
On 1 of the notes there is the number 4

Two notes are drawn at random from the box, and the following random vari-
able is introduced: X, which describes the number of notes with the number 4
among the 2 drawn. The two notes are drawn without replacement.

a) The mean and variance for X, and P(X = 0) are?

b) The 2 notes are now drawn with replacement. What is the probability that
none of the 2 notes has the number 1 on it?
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Exercise 2.4 Consumer survey

In a consumer survey performed by a newspaper, 20 different groceries (prod-
ucts) were purchased in a grocery store. Discrepancies between the price ap-
pearing on the sales slip and the shelf price were found in 6 of these purchased
products.

a) At the same time a customer buys 3 random (different) products within
the group consisting of the 20 goods in the store. The probability that no
discrepancies occurs for this customer is?

Exercise 2.5 Hay delivery quality

A horse owner receives 20 bales of hay in a sealed plastic packaging. To con-
trol the hay, 3 bales of hay are randomly selected, and each checked whether it
contains harmful fungal spores.

It is believed that among the 20 bales of hay 2 bales are infected with fungal
spores. A random variable X describes the number of infected bales of hay
among the three selected.

a) The mean of X, (µX), the variance of X, (σ2
X) and P(X ≥ 1) are?

b) Another supplier advertises that no more than 1% of his bales of hay are
infected. The horse owner buys 10 bales of hay from this supplier, and
decides to buy hay for the rest of the season from this supplier if the 10
bales are error-free.
What is the probability that the 10 purchased bales of hay are error-free, if
1% of the bales from a supplier are infected (p1) and the probability that
the 10 purchased bales of hay are error-free, if 10% of the bales from a
supplier are infected (p10)?
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Exercise 2.6 Newspaper consumer survey

In a consumer survey performed by a newspaper, 20 different groceries (prod-
ucts) were purchased in a grocery store. Discrepancies between the price ap-
pearing on the sales slip and the shelf price were found in 6 of these purchased
products.

a) Let X denote the number of discrepancies when purchasing 3 random (dif-
ferent) products within the group of the 20 products in the store. What is
the mean and variance of X?

Exercise 2.7 A fully automated production

On a large fully automated production plant items are pushed to a side band
at random time points, from which they are automatically fed to a control unit.
The production plant is set up in such a way that the number of items sent to
the control unit on average is 1.6 item pr. minute. Let the random variable X
denote the number of items pushed to the side band in 1 minute. It is assumed
that X follows a Poisson distribution.

a) What is the probability that there will arrive more than 5 items at the con-
trol unit in a given minute is?

b) What is the probability that no more than 8 items arrive to the control unit
within a 5-minute period?

Exercise 2.8 Call center staff

The staffing for answering calls in a company is based on that there will be 180
phone calls per hour randomly distributed. If there are 20 calls or more in a
period of 5 minutes the capacity is exceeded, and there will be an unwanted
waiting time, hence there is a capacity of 19 calls per 5 minutes.

a) What is the probability that the capacity is exceeded in a random period
of 5 minutes?
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b) If the probability should be at least 99% that all calls will be handled with-
out waiting time for a randomly selected period of 5 minutes, how large
should the capacity per 5 minutes then at least be?

Exercise 2.9 Continuous random variable

a) The following R commands and results are given:

pnorm(2)

[1] 0.9772

pnorm(2,1,1)

[1] 0.8413

pnorm(2,1,2)

[1] 0.6915

Specify which distributionsare used and explain the resulting probabili-
ties (preferably by a sketch).

b) What is the result of the following command: qnorm(pnorm(2))?

c) The following R commands and results are given:

qnorm(0.975)

[1] 1.96

qnorm(0.975,1,1)

[1] 2.96

qnorm(0.975,1,2)

[1] 4.92

State what the numbers represent in the three cases (preferably by a sketch).
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Exercise 2.10 The normal pdf

a) Which of the following statements regarding the probability density func-
tion of the normal distribution N(1, 22) is false?

1. The total area under the curve is equal to 1.0

2. The mean is equal to 12

3. The variance is equal to 2

4. The curve is symmetric about the mean

5. The two tails of the curve extend indefinitely

6. Don’t know

Let X be normally distributed with mean 24 and variance 16

b) Calculate the following probabilities:
– P(X ≤ 20)

– P(X > 29.5)

– P(X = 23.8)

Exercise 2.11 Computer chip control

A machine for checking computer chips uses on average 65 milliseconds per
check with a standard deviation of 4 milliseconds. A newer machine, poten-
tially to be bought, uses on average 54 milliseconds per check with a standard
deviation of 3 milliseconds. It can be used that check times can be assumed
normally distributed and independent.

a) What is the probability that the time savings per check using the new ma-
chine is less than 10 milliseconds is?

b) What is the mean (µ) and standard deviation (σ) for the total time use for
checking 100 chips on the new machine is?
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Exercise 2.12 Concrete items

A manufacturer of concrete items knows that the length (L) of his items are rea-
sonably normally distributed with µL = 3000 mm and σL = 3 mm. The require-
ment for these elements is that the length should be not more than 3007 mm
and the length must be at least 2993 mm.

a) The expected error rate in the manufacturing will be?

b) The concrete items are supported by beams, where the distance between
the beams is called Lbeam and can be assumed normal distributed. The
concrete items length is still called L. For the items to be supported cor-
rectly, the following requirements for these lengths must be fulfilled: 90 mm <
L− Lbeam < 110 mm. It is assumed that the mean of the distance between
the beams is µbeam = 2900 mm. How large may the standard deviation
σbeam of the distance between the beams be if you want the requirement
fulfilled in 99% of the cases?

Exercise 2.13 Online statistic video views

In 2013, there were 110,000 views of the DTU statistics videos that are avail-
able online. Assume first that the occurrence of views through 2014 follows a
Poisson process with a 2013 average: λ365days = 110000.

a) What is the probability that in a randomly chosen half an hour there is no
occurrence of views?

b) There has just been a view, what is the probability that you have to wait
more than fifteen minutes for the next view?
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Exercise 2.14 Body mass index distribution

The so-called BMI (Body Mass Index) is a measure of the weight-height-relation,
and is defined as the weight (W) in kg divided by the squared height (H) in
meters:

BMI =
W
H2 .

Assume that the population distribution of BMI is a log-normal distribution
with α = 3.1 and β = 0.15 (hence that log(mathitBMI) is normal distributed
with mean 3.1 and standard deviation 0.15).

a) A definition of "being obese" is a BMI-value of at least 30. How large a
proportion of the population would then be obese?

Exercise 2.15 Bivariate normal

a) In the bivariate normal distribution (see Example 2.73), show that if Σ is a
diagonal matrix then (X1, X2) are also independent and follow univariate
normal distributions.

b) Assume that Z1 and Z2 are independent standard normal random vari-
ables. Now let X and Y be defined by

X = a11Z1 + c1,
Y = a12Z1 + a22Z2 + c2.

Show that an appropriate choice of a11, a12, a22, c1, c2 can give any bivariate
normal distribution for the random vector (X, Y), i.e. find a11, a12, a22, c1, c2
as a function of µX, µY and the elements of Σ.

Note that Σij = Cov(Xi, Xj) (i.e. here Σ12 = Σ21 = Cov(X, Y)),
and that any linear combination of random normal variables will
result in a random normal variable.
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c) Use the result to simulate 1000 realization of a bivariate normal random
variable with µ = (1, 2) and

Σ =

[
1 1
1 2

]
and make a scatter plot of the bivariate random variable.

Exercise 2.16 Sample distributions

a) Verify by simulation that n1+n2−2
σ2 S2

p ∼ χ2(n1 + n2− 2) (See Example 2.85).
You may use n1 = 5, n2 = 8, µ1 = 2, µ2 = 4, and σ2 = 2.

b) Show that if X ∼ N(µ1, σ2) and Y ∼ N(µ2, σ2), then

X̄− Ȳ− (µ1 − µ2)

Sp

√
1

n1
+ 1

n2

∼ t(n1 + n2 − 2).

Verify the result by simulation. You may use n1 = 5, n2 = 8, µ1 = 2,
µ2 = 4, and σ2 = 2.

Exercise 2.17 Sample distributions 2

Let X1, ..., Xn and Y1, ..., Yn, with Xi ∼ N(µ1, σ2) and Yi ∼ N(µ2, σ2) be indepen-
dent random variables. Hence, two samples before they are taken. S2

1 and S2
2

are the sample variances based on the X’s and the Y’s respectively. Now define
a new random variable

Q =
S2

1
S2

2
(2-111)

a) For n equal 2, 4, 8, 16 and 32 find:

1. P(Q < 1)

2. P(Q > 2)



Chapter 2 2.11 EXERCISES 80

3. P
(

Q < 1
2

)
4. P

(
1
2 < Q < 2

)

b) For at least one value of n illustrate the results above by direct simulation
from independent normal distributions. You may use any values of µ1, µ2
and σ2.



Chapter 2 Glossaries 81

Glossaries

Binomial distribution [Binomial fordeling] If an experiment has two possible
outcomes (e.g. failure or success, no or yes, 0 or 1) and is repeated more
than one time, then the number of successes is binomial distributed 17

cumulated distribution function [Fordelingsfunktion]The cdf is the function
which determines the probability of observing an outcome of a random
variable below a given value

χ2-distribution [χ2-fordeling (udtales: chi-i-anden fordeling)] 56

Continuous random variable [Kontinuert stokastisk variabel] If an outcome of
an experiment takes a continuous value, for example: a distance, a tem-
perature, a weight, etc., then it is represented by a continuous random
variable 3, 26

Correlation [Korrelation] The sample correlation coefficient are a summary statis-
tic that can be calculated for two (related) sets of observations. It quantifies
the (linear) strength of the relation between the two. See also: Covariance
47

Covariance [Kovarians] The sample covariance coefficient are a summary statis-
tic that can be calculated for two (related) sets of observations. It quantifies
the (linear) strength of the relation between the two. See also: Correlation
47

Degrees of freedom [Frihedsgrader] The number of "observations" in the data
that are free to vary when estimating statistical parameters often defined
as n− 1 56

Discrete random variable [Diskret stokastisk variabel] A discrete random vari-
able has discrete outcomes and follows a discrete distribution 4
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Distribution [Fordeling] Defines how the data is distributed such as, normal
distribution, cumulated distribution function, probability density func-
tion exponential distribution, log-normal distribution, Poisson distribu-
tion, uniform distribution, hypergeometric distribution, binomial distri-
bution, t-distribution, F-distribution 3

Expectation [Forventningsværdi] A function for calculating the mean. The value
we expect for a random variable (or function of random variables), hence
of the population 12

Exponential distribution [Eksponential fordelingen] The usual application of
the exponential distribution is for describing the length (usually time) be-
tween events which, when counted, follows a Poisson distribution 37

F-distribution [F-fordelingen] The F-distribution appears as the ratio between
two independent χ2-distributed random variables 67

Hypergeometric distribution [Hypergeometrisk fordeling] 20

Independence [Uafhængighed] 50

Interval [Interval] Data in a specified range 22

Log-normal distribution [Lognormal fordeling] 37

Normal distribution [Normal fordeling] 30

Sample mean [Stikprøvegennemsnit] The average of a sample 11

t-distribution [t-fordeling] 61
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Acronyms

ANOVA Analysis of Variance Glossary: Analysis of Variance

cdf cumulated distribution function 5, Glossary: cumulated distribution func-
tion

CI confidence interval Glossary: confidence interval

CLT Central Limit Theorem Glossary: Central Limit Theorem

IQR Inter Quartile Range Glossary: Inter Quartile Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function Glossary: probability density function
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