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5.1 Linear regression and least squares

In engineering applications we are often faced with the problem of determining
the best model of some outcome given a known input

y=f(x), (5-1)

hence x is the input and the function f is the model. The task is now to find
the best model given the input variables (x) and the outcome (y). The simplest
model, besides just a mean value (covered in Chapters 3 and 4), would be a
model where f is a linear function of x

y = Bo + P1x. (5-2)

When the outcome y is the result of some experiment, the model will not be
perfect, and we need to add an error term

Y, = Bo+pixi+e, i={l,...n} (5-3)

where ¢; is a called the error and is a (independent) random variable with ex-
pectation equal zero (i.e. the mean E(g;) = 0) and some variance (V(g;) = 72).
The statistical interpretation of (5-2) is therefore that it expresses the expected
value of the outcome

E(Y;) = Bo + B1xi, (5-4)
also called the model prediction.

It is of course a very unusual situation that we actually know the values of
Bo and B and we will have to rely on estimates based on some observations
(y1,---,Yn). As usual we express this by putting a “hat” on the parameters

9i = Bo+ Prxi, (5-5)

meaning that we expect or predict §J; (in mean or average) under the conditions
given by x;.

Note, if 1 = 0 the model is
Yi:ﬁ0+5i/ = {1,...,7’1}, (5-6)

which is exactly the mean value model covered in Chapter 3, and the estimate of
the mean of the population, from which the sample (i.e. (y1,---, Yn )) was taken,
is then

(5-7)
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lll Example 5.1

A car manufacturer wants to find the relation between speed and fuel consumption,
to do so she sets up the following model

Y; = Bo + Bixi + &, (5-8)

here E(Y;) is the expected fuel consumption at the speed x;. Further, there will be
uncontrollable variations, e.g. due to differences in weather condition, but also non-
linear effects not included in the model might be present. These variations are cap-
tured by the ¢;’s. We see that speed is something we control here, and we then
observe the outcome (here fuel consumption), at different experimental conditions
(speeds).

In this chapter we will deal with estimation and inference of By, B1, and predic-
tion of Y; given x;. At some point we will have realizations (or observations) of
the outcome, in this case we write

yi=PBo+pPixi+e, i={1,...,n} (5-9)

Now y; is a realization and ¢; is the deviation between the model prediction and
the actual observation: a realization of the error ¢;, it is called a residual. Clearly,
we want the residuals to be small in some sense, the usual choice (and the one
treated in this chapter) is in the Residual Sum of Squares (RSS) sense, i.e. we
want to minimize the residual sum of squares

n

RSS(Bo, p1) = iﬁ? =Y (Y = (Bo+ B1x:))?, (5-10)
i=1

i=1

where we have emphasized that the residual sum of squares is a function of the
parameters (Bo, B1). The parameter estimates (B0, A1) are the values of By and
B1 which minimize RSS. Note, that we use Y; and ¢; rather than the observed
values (y; and ¢;), this is to emphasize that the estimators are random variables,
in actual calculations after the experiments are carried out we will just replace
Y; with y; and ¢; with e;. Figure 5.1 sketches the linear regression problem.
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Figure 5.1: Conceptual diagram for the simple linear regression problem.

|l Remark 5.2 Estimates and estimators

In (5-10) the RSS is a function of the random variables (Y;), thus making RSS
a random variable. If we replace Y; with the realizations y; then RSS is also
a realization.

In this chapter the result of optimizing RSS with respect to o and B will
be denoted 30 and ,31. Sometimes ,30 and 31 will be functions of Y; and
sometimes they will be functions of the realizations y;, they are referred to
as:

1. Estimators: before the experiment has been carried out, then 3y and
p1 are functions of Y; and they are also random variables, and we call
them estimators.

2. Estimates: after the experiment had been carried out, then By and j;
are functions of y; and they are also realizations of random variables,
and we call them estimates.
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lll Remark 5.3 Two types of examples

In this chapter we will use two types of examples, one is labeled “Simula-
tion”, which are simulation studies intended to illustrate the consequences
of theorems and general results. While the other type of examples (not la-
beled “Simulation”), are intended to illustrate the use of the theorems on
pratical examples.

5.2 Parameter estimates and estimators

When ,80 and [31 is a result of minimizing the function in Equation (5-10), we
refer to the estimators as least squares estimators. The least squares estimators are
given in the following theorem:

ll Theorem 5.4 Least squares estimators

The least squares estimators of By and B are given by

1= ?Zl(Yl’ _SY)(xl _ f)’ (5_11)

Bo=Y - pi%, (5-12)

o

where Sy = Y1 4 (x; — x)2.

As we can see above the estimators (31 and j3;) are functions of random vari-
ables (Y; and Y), and thus the estimators are themselves random variables. We
can therefore talk about the expectation, variance and distribution of the esti-
mators. In analyses with data we will of course only see realizations of ¥; and
we just replace Y; and Y with their realizations y; and §. In this case we speak
about estimates of By and B;.

Before we go on with the proof of Theorem 5.4, the application of the theorem
is illustrated in the following example:
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lll Example 5.5 Student height and weight

Consider the student height and weight data presented in Chapter 1,

Heights (x;) | 168 161 167 179 184 166 198 187 191 179
Weights (y;) | 65.5 583 68.1 857 805 634 1026 914 86.7 789

We want to find the best least squares regression line for these points, this is equiv-
alent to calculating the least squares estimates of By and ;.

We start by finding the two sample means

1
%= 15 (1684161 +...+179) =178,

1
7 =15 (655+583+...+789) =78.11.

The value of S,, is calculated by
Syx = (168 —178)% + ... + (179 — 178)? = 1342.

We can now calculate 8; as

P1 = 13,5 ((655—78.11)(168 — 179) + ...+ (79.9 ~ 78.11)(179 — 178)) = 1.1,

and finally, we can calculate B as
Bo =78.11—1.11-178 = —120.

In R the calculation above can be done by:

## Read data
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
y <- c(65.5, 58.3, 68.1, 85.7, 80.5, 63.4, 102.6, 91.4, 86.7, 78.9)

## Calculate averages
xbar <- mean(x)
ybar <- mean(y)

## Parameters estimates

Sxx <- sum((x - xbar)~2)

betalhat <- sum((x - xbar)*(y - ybar)) / Sxx
betaOhat <- ybar - betalhat * xbar

Rather than using “manual” calculations in R, we can use the build in R-function 1m
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D <- data.frame(x=x, y=y)
fitStudents <- Im(y ~ x, data=D)
summary (fitStudents)

Call:
Im(formula = y ~ x, data = D)

Residuals:
Min 1Q Median 3Q Max
-5.876 -1.451 -0.608 2.234 6.477

Coefficients:
Estimate Std. Error t value Pr(>lt|)
(Intercept) -119.958 18.897 -6.35  0.00022 **x*
b'e 1.113 0.106 10.50 0.0000059 *xx*
Signif. codes: O ’*xx’ 0.001 ’*%’ 0.01 ’x> 0.05 >.” 0.1 > > 1

Residual standard error: 3.88 on 8 degrees of freedom
Multiple R-squared: 0.932,Adjusted R-squared: 0.924
F-statistic: 110 on 1 and 8 DF, p-value: 0.00000587

As we can see the two calculations give the same results regarding the parameter
estimates. We can also see that the direct calculation in R (1m) gives some more
information. How to interpret and calculate these numbers will be treated in the
following pages.

Before we go on with the analysis of the result from 1m, the proof of Theorem
5.4 is presented:

Il Proof

Of Theorem 5.4: In order to find the minimum of the function RSS we differentiate
the residual sum of squares with respect to the parameters

RS _ Y (yi — (Bo + B1xi)), (5-13)
9Bo =1

now equating with zero we get
0=-2) (yi— (Bo+prx))
1-221 (5-14)
= —2nij + 2nPo + 2np; %,
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solving for By gives
po=17-pi%, (5-15)

and by similar calculations we get

IRSS 0 [, A a2
aBl - alél <;(yl (y ﬁlx+,31x1)) )
- 37 (2«% ~9) P —x>>2>
P (5-16)
=-2) ((yi—7) = r(xi = %)) (xi — %)
i=1
=2 [Z%Q/i —9)(xi— %) = pr ;(xi - f)zl :
equating with zero and solving for ; gives
By = Yica (Vi (_ y_)(xi)z— x)
Yig(xi—x ~
Bl D)9 o
Sxx ’

The estimates Bg and B are called least squares estimates, because they minimize
the sum of squared residuals (i.e. RSS). Replacing y; with Y; give the estimators in
the theorem.

When we have obtained parameter estimates in the linear regression model
above, we would like to make quantitative statements about the uncertainty
of the parameters, and in order to design tests we will also need the probabil-
ity distribution of the parameter estimators. The usual assumption is that the
errors are normal random variables

Yi — ﬁo + ,lel —|— 81‘, Where 81' ~ N(O, 02); (5_18)

or in other words the errors are independent identically distributed (i.i.d.) nor-
mal random variables with zero mean and variance ¢>. When random variables
are involved we know that repeating the experiment will result in different val-
ues of the response (Y;), and therefore in different values of the parameter es-
timates. To illustrate this we can make simulation experiments to analyse the
behaviour of the parameter estimates. Recall that the role of simulation exam-
ples are to illustrate probabilistic behaviour of e.g. estimators, not how actual
data is analysed.
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lll Example 5.6 Simulation of parameter estimation

Consider the linear model
Y; =10+3x; +¢;, & ~ N(0,5%) (5-19)

We can make repetitions of this experiment in R

set.seed(124)

n <- 10; k <- 500

beta0 <- 10; betal <- 3; sigma <- 5

x <- seq(-2, 5, length=n)

y <- matrix(0, ncol=k, nrow=n)

y <- y + betal + betal*x + rnorm(nxk, sd=sigma)

The variable y now contains n rows and k columns, representing k experiments, for
each of the experiment we can calculate the parameter estimates:

b0 <- numeric(k); bl <- numeric(k)
for(i in 1:k){
b <- coef(lm(y[ ,i] = x))
bO[i] <- b[1]
b1[i] <- b[2]
}
c(mean(b0), mean(bl))

[1] 9.955 3.008

As we can see the average of the parameter estimates (mean (b0) and mean(b1)) are
very close to the true parameter values (8g = 10 and B; = 3). We can of course
also look at the empirical density (the normalized histogram, see Section 1.6.1) of
the parameter estimates:

Empirical density of j Empirical density of f;
[} [ g ] 1 |
(\! —
< <+ |
(e}
. -
— ] I
= ] > | ]
= = o
2 o g
0 = 0 9~
A < A S
[T'e)
S =
(e} (e}
8 o | J k
S x x x x x \ < { x x x \
4 6 8 10 12 14 16 1 2 3 4 5

b0 bl
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The estimates seem to be rather symmetrically distributed around the true parame-
ter values. It is also clear that there is some variation in the estimates: the estimates
of Bp range from about 4 to about 16 and the estimsates of §; range from about 1 to
5.

Try changing the R code (see the accompanying chapter script):

% What happens to the mean value of the estimates if you change the number
of datapoints (1)?

What happens to the empirical density and the scatter plot of the parameter
estimates if you change:

\ e The number of data points (1)?
i e The range of x-values?
e The residual variance (0%)?

e The values of By and ;?

In the example above we saw that the average of the parameter estimates were
very close to the true values, this is of course a nice property of an estimator.
When this is the case in general, i.e. when E[f;] = B; we say that the estimator
is central. The estimators 3y and B, are in fact central, and we show this in
Section 5.2.1 below.

In order to test hypothesis about y and f; we will also need to give exact state-
ments about the distribution of the parameters. We saw in Example 5.6 above
that the distributions seem to be symmetric around the true values, but we will
need more precise statements about the distributions and their variances. This
important part will be dealt with in the Sections 5.3 and 5.4.

5.2.1 Estimators are central

In the linear regression model we assume that the observed values of Y; can be
split into two parts: the prediction (the part explained by the regression line
(Bo + B1x;)) and the error (a random part (¢;)). As usual we view our estima-
tors as functions of random variables (the ¢;’s), so it makes sense to calculate
the expectation of the estimators. The assumption E(e;) = 0 is central for the
presented arguments, and will be used repeatedly.
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In order to find the expectation of the parameter estimators we rewrite our esti-
mators as functions of the true parameters (8o and 1)

Bl — 2?:1(Yi ;Y) ('xi B f)’ (5_20)

inserting Y; = Bo + B1x; + ¢; and Y = %Z?:l(ﬁo + Bixi+¢€i) = Bo+ P1¥ + &
gives

18‘1 — 2?:1 [(:BO + ﬁlxi + & _S (ﬁo + :317? + é)] (xi — X‘)’ (5_21)

now the sum is divided into a part which depends on ¢; (the random part) and
a part which is independent of ¢;

B = Y Ba(xi — %) X Yie1(ei —8)(x; — %)
o T (5-22)
:ﬁ1+21 1€ (x,—x) €Zi:1(xi—x)
Sxx Six !
now observe that ) ' ;(x; — %) = 0 to get
By = By + Zi=L S(x’ — %) (5-23)
for By we get
Po=7-p*
= % Z(ﬁo + B1xi + &) — (51 4 Lz sé(xi - x)) x
= Bo+ P1%; + % Y &i— (,51 + Li=1 sé(xi — X)) x (>-24)
i=1 xx

= ﬁo+%2si— (Zi_lsgiji_f)) x

Since expectation is a linear operation (see Chapter 2) and the expectation of ¢;
is zero we find that E[g] = Bo and E[1] = B1, and we say that B, 1 are central
estimators.

5.3 Variance of estimators

In order for us to be able to construct confidence intervals for parameter esti-
mates, talk about uncertainty of predictions and test hypothesis, then we will
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need the variance of the parameter estimates as well as an estimator of the error
variance (0?).

Parameter variance and covariance of estimators are given in the following the-
orem:

ll Theorem 5.7  Variance of estimators
The variance and covariance of the estimators in Theorem 5.4 are given by

2 52 2

A oc X0
V{Bo] = — =)
[IBO] n + Sxx 2 (5 5)
A (7'2
ViBil = 5~ (5-26)
XX
)
P xo
Cov|[Bo, B1] = —g (5-27)
XX
where ¢? is usually replaced by its estimate (6%). The central estimator for
o?is
52 _ RSS(Bo, B1)
2 _ -
of=— (5-28)

When the estimate of ¢ is used the variances also become estimates and
we’ll refer to them as ?7/%0 and &/%1'

The variance of 31 is a function of the true error variance (¢2) and Sy,. For most
(all reasonable) choices of the regressors (x), Sxy will be an increasing function
of n, and the variance of 31 will therefore decrease as 1 increases. This expresses
that we will be more certain about the estimates as we increase the number of
points in our sample. The same is true for the variance of g, and the covari-
ance between B, and By. The error variance estimate () is the residual sum of
squares divided by n — 2, the intuitive explanation for the n — 2 (rather than n
or n — 1) is that if we only have two pairs (x;, y;, i.e. n = 2), it will not be possi-
ble to say anything about the variation (the residuals will be zero). Or another
phrasing is that; we have used 2 degrees of freedom to estimate By and ;.

Before we turn to the proof of Theorem 5.7, we will take a look at a couple of
examples.



Chapter 5 ||| 5.3 VARIANCE OF ESTIMATORS 12

lll Example 5.8 (Example 5.5 cont.)

In Example 5.5 we found the parameter estimates

A

Bo = —119.96, P =1.113,
we can now find predicted values of the dependent variable by
9 = —119.96 + 1.114 - x;,

and the values of the residuals

ei =Y — Vi,
and finally the error variance estimate is

2 1 0 2
(% :—10_2261.

In R we can find the results by:

beta0 <- coef(fitStudents) [1]

betal <- coef(fitStudents) [2]

e <- y - (betal0 + betal * x)

n <- length(e)

sigma <- sqrt(sum(e~2) / (n - 2))

sigma.beta0 <- sqrt(sigma~2 * (1 / n + xbar~2 / Sxx))
sigma.betal <- sqrt(sigma~2 / Sxx)

c(sigma, sigma.betal, sigma.betal)

[1] 132.946 645.983 3.629

As usual we use standard deviations rather than variances, this also means that we
can compare with the results from 1m (see Example 5.5). Again we can find our
estimates in the R-output, the parameter standard deviations are given in the second
column of the coefficient matrix and the estimated standard deviation of the error is
called residual standard error.

The simulation example (Example 5.6) can also be extended to check the equa-
tions of Theorem 5.7:
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Il Example 5.9 Simulation

In Example 5.6 we looked at simulation from the model
Y; =10+ 3x; +¢;, & ~ N(0,5%)
In order to calculate the variance estimates we need to calculate ¥ and S,,:

Sxx <- (n-1)*var(x)

c(mean(x), Sxx)

[1] 1.50 49.91

y <- matrix(0, ncol=k, nrow=n)

and we would expect to obtain the variance estimates close to

. 1 1502
_e2( L _
V[Bo] =5 <10 + 49‘91) 3.63

R 52
VIR = 557

= 0.501

With simulations we find:

b0 <- numeric(k); bl <- numeric(k)
sigma <- numeric (k)
for(i in 1:k){
fit <- 1m(y[ ,i] ~ x)
b <- coef(fit)
bO[i] <- b[1]
b1[i] <- b[2]
sigmali] <- summary(fit)$sigma
}

c(var(b0), var(bl), mean(sigma))

[1] 3.7755 0.5427 4.8580

We can see that the simulated values are close to the theoretical values. You are in-
vited to play around with different settings for the simulation, in particular increas-
ing k will increase the accuracy of the estimates of the variances and covariance.

The example above shows how the Theorem 5.7 can be illustrated by simula-
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tion, a formal proof is given by:

Il Proof

Of Theorem 5.7. Using (5-24) we can write the variance of By as

=V|Bo+ % ési - <Z?:1 85<x —~ ’?)> x] , (5-29)

using the definition of the variance (V(X) = E[(X — E[X])?]) and E(¢) = 0 we get

V(Bo)

n

V(o) =V % Y e +V[<Zi:1 Eg(xi — x>> JZ] -
= ( = ’ (5-30)
Yiiqei(x—x ) _
2E ==——")x,
[n l; ( Sxx
now use independence between ¢; and ¢; (i # j) to get
5 o? oY (x— %) x0?
V(fo) = — + Ll 2 ) o L (xi—%)
n (Sxx) Noxx ;5
(5-31)
o?  x20?
R

Finally, the variance of 1 is (again using the definition of variance and indepen-
dence of the ¢’s)

A "ei(x;— X
V(B1) =V|B1+ 2115()
xXx
(- 92V 532
(Sxx)”
_ 7
B Sxx,
and the covariance between the parameters estimates becomes
Cov(Bo, B1) = E[(Bo — Bo) (b1 — p1)]
_ ln . Zzls(xl ) lee(xz—x)
=E (7’1 ;81 Sxx Sxx
- Y g iei isi(x,' - 3?)] - Lz E [i e2(x; — 32)2] (5-33)
1Sy P —— (Sxx) i=1
xo?(nx — nx) T 2
= o xXi— X
nSxx (Sxx)z 1:21( Z )
Xo
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To get an estimate of the residual variance we calculate the expected value of the
residual sum of squares

n

E(RSS) =E|Y_(Y; — (Bo+ p1xi))?|, (5-34)

i=1

inserting Y; = Bo + P1x; + ¢; and rearranging gives

E(RSS) ZE[ (Bo— Bo) — (B1 — P1)xi + )’

n

- {E [(Bo — /30)2} +E[(B1 — B1)?] 22 + E[2] + (5-35)

i=

2E[(ﬁo — Bo)(B1 — B1)] xi — 2E[(Bo — Po)ei] —2E[(B1 — B1)ei] xi},

now observe that E[( 0— ,3) - V[ﬁo] [(Bl ‘31)] — V[.Bl] E(2 2) = ¢2, and
E[(Bo — Bo) (1 — B1)] = Cov

(Bo, B1), and insert By and B in the last two terms

E(RSS) = nV(Bo) + V(B1) ix? +no*+2 iCov (Bo, B1) xi

i=1 i=1
2 - n .
1 1 &i(xj— X q&i(x;—x
22{ {( Z ‘ 2]151(] )51']—1‘3[2]1;(] )gi]xl}
j=1 xx xx
- S
BRSNSV SEANERPY 0 (5-36)
Sxx Sxx :1
oot o (x— 1 g2 J?)
2y (= -2 o
L(G )
now collect terms and observe that )_x; = nx
2 n ) 2y (22 s
E(RSS) — 0'2(11 T 1) 4 i Z(xZZ + X.Z) o zﬂ - 20_2 i 20- Zz:l(xl xzx)
Sxx i=1 Sxx Sxx
2 o ¢ 2 2 .
=0’(n—1)+ — ) (—x7 — ¥+ 2x,%)
xx =1
o2
o?(n—1) — stxx (5-37)
XX
o*(n —2)
and thus a central estimator for ¢? is ¢ RSS
[ ]

Before we continue with parameter distributions and hypothesis testing, the
next example illustrates the behaviour of the parameter variance estimates:
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Il Example 5.10 Simulation

Consider the following model

Yi=14x;+¢, ¢~ N(O,l), (5-38)
also assume that x; = £=1, i = 1,...,n where n is the number of pairs (x;,y;). We
want to make a simulation experiment for increasing number of pairs, and extract
the parameter variance, parameter covariance and residual variance estimates. In
order to do so we need to extract these numbers from a linear model i R. This can be
done by:

x <- seq(0, 1, length=10)

y <- 1 + x + rnorm(10)

## Fit the model (estimate parameter)
fit <- 1m(y ~ x)

## Print summary of model fit

summary (fit)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-0.867 -0.596 0.232 0.374 1.295

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.454 0.434 1.05 0.3256
X 2.521 0.731 3.45 0.0087 **
Signif. codes: O ’**x’ 0.001 ’*x’ 0.01 ’x’ 0.05 .7 0.1 * * 1

Residual standard error: 0.738 on 8 degrees of freedom
Multiple R-squared: 0.598,Adjusted R-squared: 0.548
F-statistic: 11.9 on 1 and 8 DF, p-value: 0.0087

## Restdual standard deviation

sigma <- summary(fit)$sigma

## Estimated standard deviation of parameters
summary (fit)$coefficients[ ,2]

(Intercept) X
0.4336 0.7310
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Now let’s return to the simulation example, the number of independent variables
(x) is increased and we draw the residual from the standard normal distribution, in
this particular case we can find Sy, as a function of n, and compare the expected
values (fix 0> = 1) with the simulation results

sigma.beta <- matrix(nrow=k,ncol=2)
sigma <- numeric(k);
n <- seq(3, k+2)
for(i in 1:k){
x <- seq(0,1,length=n[i])
y <- l+x+rnorm(n[i])
fit <- 1lm(y ~ x)
sigmali] <- summary(fit)$sigma
sigma.betali, ] <- summary(fit)$coefficients[ ,2]

+
O . 0
— ] o ] |
i
_ o |
N S
— ®
o
o~ _ o — o
& <§L g -1 <§L —
@ — ®
= * |
N S
_ o
. _
e | |
s T T T T T s T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
n n n

We see that the residual variance converge to the true value with smaller and smaller
variation, while the parameter variances converge to zero. In a plot like this we can
therefore see the gain from obtaining more observations of the model.

Again you are encouraged to change some of the specifications of the simulation set
up and see what happens.

5.4 Distribution and testing of parameters

The regression model is given by
Y; = Po+ Prxi+ ¢, &~ N(0,07), (5-39)

where the estimators of the parameters and their variances are given by The-
orems 5.4 and 5.7. Since the estimators are linear functions of normal random
variables (g;) they will also be normal random variables. To give the full stochas-
tic model we need to use the estimate of the residual variance, and take the
unceartainty of this estimator into account when constructing tests.
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As we already saw in Example 5.6 we cannot expect to get the true value of
the parameter, but there will be some deviations from the true value due to
the stochastic nature of the model/real world application. The purpose of this
section is to give the precise description of the parameter distributions. We aim
at testing hypothesis of the type

Ho;i: Bi = Bo, (5-40)

against some alternatives. The general remarks on hypothesis testing from
Chapter 3 still apply, but we will go through the specific construction for lin-
ear regression here.

The central estimator of ¢? (Equation (5-28)) is x2-distributed with n — 2 de-
grees of freedom. In order to test the hypothesis in Equation (5-40) we need
the normalized distance to a null hypothesis (i.e the distance from the observed
estimate ,BO,i to the value under the null hypothesis p ;). From Theorem 5.7 the
standard deviations of the parameter estimates are found to

. o2 x202 |1 x2
0'/30 = 74‘ :U\/—+W, (5—41)

Sxx
2 1
I K o 42

under the null hypothesis the normalized (with standard deviations) distance
between the estimators and the true values are both t-distributed with n — 2
degrees of freedom, and hypothesis testing and confidence intervals are based
on this t-distribution:

Il Theorem 5.11  Test statistics

Under the null hypothesis (8p = Boo and 1 = Po1) the statistics

Tg, = ﬁo_ﬁoo (5-43)
0/30

Tp, = Pi—Pox 501 (5-44)
Op,

are t-distributed with n — 2 degrees of freedom, and inference should be
based on this distribution.
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Il Proof

The proof is omitted, but rely on the fact that B; is normally distributed, &éi is x?

distributed, and a normal random variable divided by the square root of a x? dis-
tributed random variable is t-distributed.

In this material we only test two-sided hypothesis. The hypothesis can be con-
cluded using p-values or critical values, in the same way as we saw for hypoth-
esis regarding mean values in Chapter 3 Section 3.1.7.

lll Example 5.12 Example 5.8 cont.

We continue with the data from Examples 5.5 and 5.8, where we found the parame-
ter estimates and the variance estimates. We want to test the hypotheses

HOO : ,BO =0 wvs. H10 : ,BO 7é 0, (5-45)
H01 : ﬁl =1 wvs. H11 : ,31 7'5 1, (5-46)

on confidence level & = 0.05. With reference to Examples 5.5 and 5.8, and Theorem
5.11, we can calculate the f-statistics as

—119.96

tobs,[so = W = —6.35, (5-47)
1.113 -1

tObS,ﬁl - W - 1.07 (5'4:8)

Hyy is rejected if [tops g, | > t1—a/2, and Ho is rejected if |tops p, | > t1-a/2, as usual we
can find the critical values in R by:

qt (0.975,d£=10-2)

[1] 2.306

and we see that with significance level « = 0.05, then Hyy is rejected and Hy; isn’t. If
we prefer p-values rather than critical values, these can be calculated by:

p.v0 <- 2 * (1 - pt(abs(-6.35), df=10-2))
p.vl <- 2 % (1 - pt(abs(1.07), df=10-2))
c(p.v0,p.v1)

[1] 0.0002206 0.3158371
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The p-value for the intercept (Bo) is less than 0.05, while the p-value for B, is greater
than 0.05, hence we conclude that fy # 0, but we cannot reject that f; = 1. The
summary of linear model in R, also give t-statistics and p-values (see Example 5.5).
The test statistic and the p-value for Hy; is different from the one we obtained above.
The reason for this is that summary () tests the default hypothesis Hy; : B; = 0 against
the alternative Hy; : B; # 0. Even though this choice is reasonable in many situations
it does not cover all situations, and we need to calculate p-values from the summary
statistics ourselves if the hypotheses are different from the default ones.

ll Method 5.13  Level « t-tests for parameter

1. Formulate the null hypothesis: Hy; : B;i = Po,, and the alternative hy-
pothesis Hy;: Bi # Bo,i

2. Compute the test statistic tops g, = ’31;—;01
3. Compute the evidence against the null hypothesis
p—Valuei =2 p(T > |t0b5,ﬁi’) (5-49)

4. If p-value; < a reject Hy ;, otherwise accept Hy;

In many situations we will be more interested in quantifying the uncertainty of
the parameter estimates rather than testing a specific hypothesis. This is usually
given in the form of confidence intervals for the parameters:

lll Method 5.14 Parameter confidence intervals

(1 — &) confidence intervals for By and B; are given by

Bo+ti_as2 - 0p,, (5-50)
BrEti_as - Op,, (5-51)

where t1_, 5 is the (1 — «/2)-quantile of a t-distribution with n — 2 degrees
of freedom. Where 05 and 0y, are calculated from the results in Theorem
5.7, and Equations (5-41) and (5-42).
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lll Remark 5.15

We will not show (prove) the results in Method 5.14, but see Remark 3.33.

ll Example 5.16 Example 5.12 cont.

Based on Method 5.14 we immediately find the 95% confidence intervals for the
parameters

Ig, = —119.96 =+ to.o75 - 18.897 = [~163.54, —76.38),
Ig, = 1.113 % to.975 - 0.1059 = [0.869,1.357],

with the degrees of freedom for the t-distribution equal 8, and we say with high
confidence that the intervals contain the true parameter values. Of course R can find
these directly from the result returned by 1m():

confint (fitStudents, level=0.95)

2.5 % 97.5 %
(Intercept) -163.5348 -76.381
X 0.8684 1.357

5.4.1 Confidence and prediction intervals for the line

It is clearly of interest to predict outcomes of future experiments. Here we need
to distinguish between prediction intervals, where we predict the outcome of
one single experiment, and confidence intervals, where we predict the mean
value of future outcomes. In the latter case we only need to account for the
uncertainty in the parameter estimates while in the first case we will also need
to account for the uncertainty of the error (the random part ¢;).

If we conduct a new experiment with x; = xpew the expected outcome is

yAnew = BO + lenew (5'52)

where the only source of variation comes from the variance of the parameter
estimates, and we can calculate the variance of Ypew

V(?new) = V(BO + lenew)

X R . (5-53)
= V(,BO) —+ V(ﬁlxnew) + 2COV(ﬁO, ﬁlxnew)/
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now use the calculation rules for variances and covariances (Section 2.7), and
insert the variances and the covariance from Theorem 5.7

2 252 2,2 25
V(Y/new) = U— + rx + 7 Ynew _ 20 *new
n Sxx Sxx Sxx (5-54)
o (L Loy
n Sxx
to find the variance of a single new point, we are using
Ynew = BO + ,lenew + Enew, (5-55)

and therefore need to add the variance of the residuals (enew is independent
from g and ;)

1 _=\2
V(Ynew) = 02 (1 +o 4+ (xf”sv—x)) . (5-56)
XX

When we construct confidence and prediction intervals we need to account for
the fact that o2 is estimated from data and thus use the t-distribution:

lll Method 5.17 Intervals for the line

The (1-x) confidence interval for the line By + B1Xnew is

A oA 1 (Xpew — X)?
,BO + 51xnew + tluc/ZO-\/_ + M: (5'57)
n Sxx

and the (1-«) prediction interval is

Bo + B1xnew £ tlw/zﬁ\/l + -+ / (5-58)
n Sxx

where t;_, /5 is the (1 — a /2)-quantile of the t-distribution with n — 2 degrees
of freedom.

|l Remark 5.18

We will not show the results in Method 5.17, but use Equations (5-52)-to-
(5-56) and Remark 3.33.

As illustrated in Figure 5.2 the confidence interval width will approach zero
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Figure 5.2: Best linear fit (red line), truth (blue line), 95% prediction interval for
the points (light grey area), 95 % CI for the line (dark grey area), and observed
values (black dots), for simulated data (see Example 5.20).

for an increasing number of data points (1) increase or as Sy, increase (actu-
ally, in most situations Sy, will also increase as n increase). Note also, that the
confidence and prediction interval widths are smallest when xpew = *. The
prediction interval width will approach 2z;_,/, - 0 as n — oo. The difference
between the intervals are that the prediction interval covers a new observa-
tion in (1 — &) - 100% of the times, while the confidence interval is expected to
cover the true regression line (1 — &) - 100% of the times. One important point
is: “when we have calculated the prediction interval based on some particular
sample, then we actually don’t know the probability of this interval covering
new observations”. What we know is: if we repeat the experiment, then in
(1 —a) - 100% of the times a new observation will be covered (we make a new
observation each time). Same goes for the confidence interval: we don’t know if
the true regression line is covered by a particular interval, we only know that if
we repeat the experiment, then in (1 — &) - 100% of the times the true regression
line will be covered.

In the following: first an example on calculating confidence and prediction in-
tervals, second an example on the width of the intervals, and finally Example
5.21 on the prediction interval coverage, are given.
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lll Example 5.19 Student height and weight Example (5.16 cont.)

With reference to Example 5.16 suppose we want to calculate prediction and confi-
dence intervals for the line for a new student with xpew, = 200 cm, the prediction is
Jnew = 102.6 kg and the 95% confidence and prediction intervals become

1 (178 —200)2
Tpred = —120 + 1.113 - 200 = fo.075(8) -3.88\/1 +15+ (13T) = [91.8,113],
(5-59)
B 1 (178 -200)%
Loonf = —120 + 1.113 - 200 =+ £0.975(8) -3.88\/ ot T = 965,109
(5-60)

where tg 975 is the 0.975-quantile of a t-distribution with n — 2 degrees of freedom.

In R the intervals can be calculated by:

predict (fitStudents, newdata=data.frame(x=200), interval="confidence",
level=0.95)

fit lwr upr
1 102.6 96.52 108.7

predict (fitStudents, newdata=data.frame(x=200), interval="prediction",
level=0.95)

fit lwr upr
1 102.6 91.77 113.4

lll Example 5.20 Simulation

The following plot illustrates the difference between the confidence and prediction
intervals for simulated data, with different numbers of observations:

her ref til figur

The model simulated is

y;i =10+ 2x; +¢&, & ~ N(0,5%) (5-61)

When n increases the width of the confidence interval for the line narrows and
approaches 0, while the prediction interval width does not approach 0, but rather
2z1_/20. Further, the width of the prediction interval will always be larger than the
width of the confidence interval.
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lll Example 5.21 Prediction interval coverage

In this example it is illustrated that we actually don’t know the probability that a
prediction interval covers new observations, when the it is calculated using a sam-
ple (i.e. we have a realization of the prediction interval). First, a prediction interval
is calculated using a single sample and it is investigated how many of k new obser-
vations falls inside it:

## The number of obserwvations and the parameters

n <- 30

beta0 <- 10; betal <- 3; sigma <- 0.5

## Generate some input values

X <- runif(a, -10, 10)

## Simulate output wvalues

y <- beta0 + betal*x + rnorm(n, sd=sigma)

## Fit a simple linear regresstion model to the sample
fit <- Im(y ~ x)

## The number of new observations

k <- 10000

## Generate k new input values

xnew <- runif(k, -10, 10)

## Calculate the prediction intervals for the new input wvalues

PI <- predict(fit, newdata=data.frame(x=xnew), interval="pred")

## Simulate new output observations

ynew <- betal + betal*xnew + rnorm(k, sd=sigma)

## Calculate the fraction of times the prediction interval covered the new observation
sum(ynew > PI[ ,"lwr"] & ynew < PI[ ,"upr"]) / k

[1] 0.8784

We see that the interval covered only 87.8% of the new observations, which quite
less than 95% (per default predict use & = 5%).

Now, lets repeat the sampling, so we make a new sample k times and each time
calculate a new fit and prediction interval, and each time check if a new observation
falls inside it:
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## The number of simulated samples
k <- 10000
## Repeat the sampling k times
covered <- replicate(k, {
## The number of observations and the parameters
n <- 30
betaO <- 10; betal <- 3; sigma <- 0.5
## Generate some input values
X <- runif(n, -10, 10)
## Simulate output wvalues
y <- beta0 + betal*x + rnorm(n, sd=sigma)
## Fit a simple linear regresstion model to the sample
fit <- Im(y ~ %)

## Generate a new input value
xnew <- runif(1, -10, 10)
## Calculate the prediction interval for the new wvalue
PI <- predict(fit, newdata=data.frame(x=xnew), interval = "pred")
## Simulate a single new observation
ynew <- betal + betal*xnew + rnorm(1l, sd=sigma)
## Check ©f the mew obserwvation was instide the interval
ynew > PI[1,"lwr"] & ynew < PI[1,"upr"]
D

## The fraction of covered new observations
sum(covered) /k

[1] 0.9524

It is found that coverage is now very close to the expected 95% and this is indeed
the way the coverage probability should be interpreted: with repeated sampling the
probability is 1 — « that a prediction interval will cover a randomly chosen new ob-
servation. Same goes for confidence intervals (of any kind): with repeated sampling
the probability is 1 — « that a confidence interval will cover the true value.

5.5 Matrix formulation of simple linear regression

The simple linear regression problem can be formulated in vector-matrix nota-
tion as

Y=XB+e e~ N(0,0°0) (5-62)
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or

Yl 1 X1 &1
. | [Bo . , 2 ;
= | + ||, &~N(,07) (5-63)

Yn 1 xn ‘Bl 87’1

One of the advantages of the matrix formulation is that the analysis generalize
to higher dimensions in a straight forward way (i.e. more xs and parameters as
in the following chapter). The residual sum of squares is given by

RSS =¢eTe = (Y — XB)T(Y — XB), (5-64)

and the parameter estimators are given by:

lll Theorem 5.22

The estimators of the parameters in the simple linear regression model are
given by

p=(xTx)"'xTy, (5-65)
and the covariance matrix of the estimates is
VBl =2 (x"X)7, (5-66)

and central estimate for the error variance is

RSS
A2 .
= (5-67)

A

Here V[B] is a matrix with elements (V[B)11 = V[Bo], (V[B])22 = V|[B1], and
(VIBD12 = (V[B])21 = Cov|po, f1]-

When we want to find the minimum of RSS, we again need to differentiate RSS
with respect to the parameters

ORSS iy _
55~ X (Y — XB) .68

=2(xTy — XTXB).

Solving for B gives

B=(x"x)"'x"y, (5-69)
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taking the expectation of § we get

The variance of the parameters estimates are given by

VIB|

V[(XTx)1xTy]
= (XTX)"IXTV[XB+ ] X (XTX)" T

= (XTX)"IXT(VIXB] + V[eh) X (XTx)T

= (XTx)"'xT?1x(xTx)" T
= 2(XTx)"IxTx(xTx)!
=o?(XTx) L.

2 s

6_2 — RSS(ﬁ),
n—2

Again a central estimate for o

and the estimate of the parameter covariance matrix is

Lg=0*(XTX)"".

Marginal tests (Hy : B; = Bi) are constructed by observing that

Bi —Aﬁi,o ~tn—2).
(Ep)ii

The matrix calculations in R are illustrated in the next example.

28

(5-70)

(5-71)

(5-72)

(5-73)

(5-74)
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lll Example 5.23  Student height and weight

To illustrate how the matrix formulation works in R, the student height and weight
data is worked through below:

## Data

X <- cbind(1, x)

n <- length(y)

## Parameter estimates and wvariance

beta <- solve(t(X) %*%h X) %x¥h t(X) %% y
e <- y - X %% beta
S <- sqrt(sum(e~2) / (m - 2))

Vbeta <- 872 * solve(t(X) %*% X)

sbeta <- sqrt(diag(Vbeta))

T.stat <- beta / sbeta

p.value <- 2 * (1 - pt(abs(T.stat), df = n-2))

## Print the results

coef.mat <- cbind(beta, sbeta, T.stat, p.value);

colnames(coef .mat) <- c("Estimates","Std.Error","t.value","p.value")
rownames (coef .mat) <- c("betal", "betal")

coef.mat; s

Estimates Std.Error t.value p.value

betal 9.815 0.07773 126.3 0
betal 3.039 0.01363 222.9 0
[1] 0.42

## Prediction and confidence interval
xnew <- matrix(c(1, 200), ncol=2)
ynew <- xnew %*J beta

Vconf <- xnew %*J, Vbeta %*}% t(xnew)
Vpred <- Vconf + s72

sqrt (c(Vconf, Vpred))

[1] 2.740 2.772

5.6 Correlation

In the analysis above we focus on situations where we are interested in one
variable () as a function of another variable (x). In other situations we might
be more interested in how x and y vary together. Examples could be ecosys-
tems, where the number of predators is a function of the number of preys, but



Chapter 5 ||| 5.6 CORRELATION 30

the reverse relation is also true, further both of these numbers are affected by
random variations and knowledge of one only gives partial knowledge of the
other. Another example is individual student grade in 2 different courses, be-
fore any grade has been given we will expect that a high grade in one course
will imply a high grade in the other course, but none of them is controlled or
known in advance.

In the cases above we talk about correlation analysis and to this end we will
need the sample correlation coefficient, as defined in Section 1.4.3

A 1 L X;— X yi—y )
p_n—lx( Sy )(sy ) (5-75)

i=1

In Section 1.4.3 we notated sample correlation with r, but here we use p, since
it is an estimate for the correlation p (see Section 2.8), and imply that there is a
meaningfull interpretation of the p.

5.6.1 Inference on the sample correlation coefficient

In order to answer the question: are X and Y correlated? We will be interested
in constructing a test of the type

Hy:p=0, Hy:p#0. (5-76)

Consider the model
Y; = Bo+ B1Xi+ei, e~ N(0,0?), (5-77)

in this case we can rewrite the sample correlation as
n
p= n—1 Z
B () (5
n—185,, = Sy Sy (5-78)

implying that the hypothesis (5-76) can be tested by testing the hypothesis

Hy:B1=0; Hi:py #0. (5-79)
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since clearly the relationship in Equation (5-77) can be reversed. It should be
noted that we cannot use the test to construct a confidence interval for p.

It should be stressed that correlation does not imply causality, it just implies
that the variables x and y vary together. As an example consider the number
of beers sold at the university bar and the number of students attending the
introductory course in statistics. Let’s say that both numbers have increased
and therefore have a high correlation coefficient, but it does not seem reasonable
to conclude that students are more interested in statistics when drinking beers.
A closer look might reveal that the number of enrolled students have actually
increased and this can indeed explain the increase in both numbers.

5.6.2 Correlation and regression

In the linear regression models we would like to measure how much of the
variation in the outcome (Y) is explained by the input (x). A commonly used
measure for this is the coefficient of determination (explanation) or R?-value
(see also the R summary in Example 5.5).

Il Definition 5.24 Coefficient of determination R?

The coefficient of determination expresses the proportion of variation in the
outcome (Y) explained by the regression line

M — P2

In order to find this we will split the variance of y into a component due to the
regression line and a component due to the residual variation

1 n
2 2
Sy - n_llzzl(yl y)
=7 Y (Bo+Pixi+ei— =Y (Bo+ Pixi +ei))
hn—1.3 hi=3 (5-81)
1 & s )
= Y (Bi(xi — %) +e;)?
n—13
A -2
= fist+ 220

—_
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where the first term on the right hand side is the variability explained by the
regression line and the second term is the residual variation. Dividing with the
variance of Ygives a splitting in the relative variation from each of the terms. If
we write out the variation explained by the regression line we get

Bisi <Z?_1(%‘ —7)(xi — f))z " (xi—%)%* n-1

2 U o - n1 Ty 9

n—1 n—1

2
(” -1 ;(yi A ﬂ) Vil (i — 220 (vi—9)* (5-82)

We can therefore conclude that the proportion of variability (R?) in Y explained
by the regression line is equal to the squared sample correlation coefficient (9?).

lll Example 5.25 Student weight and height (Example 5.19 cont.)

With reference to Example 5.19 above we can calculate the correlation coefficient in
R:

cor(x, y)~2

[1] 0.9994

or we can base our calculations on the estimated slope:

coef (fitStudents) [2] "2 * var(x) / var(y)

X
0.134

or we can find it directly in the summary of the regression model (see Example 5.5):
where the number is called Multiple R-squared.
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5.7 Model validation

So far we have discussed how to estimate parameters, predict future values,
make inference etc. in the model

Y; = Bo+ Bixi +¢&i, € ~ N(0,0%). (5-83)

In all we have done so far the basic assumption is that the residuals are normally
distributed with zero mean and constant variance, and further the residuals are
mutually independent. These are assumptions which should be checked and
if the assumptions are not fulfilled some actions should be taken in order to
tix this. This is called model validation or residual analysis and is exactly the same
idea behind the validation needed for the mean model used for t-tests in Section
3.1.8, though here including a few more steps.

The normality assumption can be checked by a normal g-q plot, and the con-
stant variance assumption may be checked by plotting the residuals as a func-
tion of the fitted values. The normal g-q plot have been treated in Section 3.1.8
and should be applied equivalently. Plotting the residuals as a function of the
fitted values should not show a systematic behaviour, this means that the range
should be constant and the mean value should be constant, as illustrated in the
following example:

Il Example 5.26 Simulation

We consider data generated from the following three models

Y1 = Po+Pixii+e, & ~N(@O1), (5-84)
Yoi = Bo+ Bix1,i + Paxoi+¢€i, € ~ N(0,1), (5-85)
Ys; = ePothimite e N(0,1) (5-86)

In all cases we fit the model
Y; = Bo+ Pixii+e, €~ N(0,0%), (5-87)

to the data: from the first model we would expect that the residual analysis do not
show any problems, for the second model we have a linear dependence which is
not included in the model and we should see this in the residual analysis, and the
third is a non-linear function of the residuals as well as the regressors and one way
to handle this will be discussed.

The first model is simulated, estimated and analysed by (8o = 0, 81 = 1, and o2 =1):
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n <-100

xl <- seq(1, 10, length=n)

y <- x1 + rnorm(n)

fit <- Im(y ~ x1)

qgnorm(fit$residuals, pch=19, cex=0.5)

gqline(fit$residuals)

plot(fit$fitted.values, fit$residuals, pch=19, cex=0.5,
xlab="Fitted values ($\\hat{y}_i$)", ylab="Residuals ($e_i$)")

Normal Q-Q Plot
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As we can see there is no serious departure from normality and there are no patterns
in the residuals as a function of the fitted values.

The second model (with Bp = 0,81 =1, B2 = 0.5and 0? = 1) is simulated, estimated
and analysed by (plot functions omitted):

x1 <- seq(1, 10, length=n)

x2 <- seq(1, 10, length=n)~2
y <- x1 + 0.5 * x2 + rnorm(n)
fit <- Im(y ~ x1)
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Normal Q-Q Plot
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We see some departure from normality, but also that the residuals are related to the
fitted values with a clear pattern. In the next chapter we will learn that we should
find the hidden dependence (x;) and include it in the model.

The third model (with fp =0, 1 =1, B2 = 0.5 and 0? = 1) is simulated, estimated
and analysed by (plot function omitted):

xl <- seq(4, 10, length=100)
y <- exp( 0.2 * x1 + rnorm(length(x1), sd = 0.15))
fit <- Im(y ~ x1)

Normal Q-Q Plot
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We see quite some departure from normality, and also that the variance increases as
a function of the fitted values. When the variance is clearly related with the fitted
values one should try to transform the dependent variable. The following R do the
analysis based in log-transformed data:

y <- log(y)
fit <- Im(y ~ x1)
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Normal Q-Q Plot
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From the g-q plot it is found that the distribution is now quite symmetric, however
still with slightly heavy tales, hence less departure from normality, compared to
previous q-q plot. And, as we can see the residuals are no longer related clearly to

the fitted values.

lll Method 5.27 Model validation (or residual analysis)

1. Check the normality assumption with a q-q plot of the residuals

2. Check the systematic behaviour by plotting the residuals ¢; as a func-
tion of fitted values 7;

lll Remark 5.28 Independence

In general independence should also be checked, while there are ways to do
this we will not discuss them here.
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5.8 Exercises

ll Exercise 5.1 Plastic film folding machine

On a machine that folds plastic film the temperature may be varied in the range
of 130-185 °C. For obtaining, if possible, a model for the influence of tempera-
ture on the folding thickness, n = 12 related set of values of temperature and
the fold thickness were measured that is illustrated in the following figure:

Thickness
100 110 120 130
| | | |

90

\ T T T T \
130 140 150 160 170 180

Temperature

a) Determine by looking at the figure, which of the following sets of esti-
mates for the parameters in the usual regression model is correct:

1) Bo=0,B1=-09,6=36

2) Bo=0,B,=09,6=36

3) Bo=252,p1=-09,6=36
4) Bo= —252, B, = 09,6 =36
5) Bo=252,p1=—-09,6=36

b) What is the only possible correct answer:

1) The proportion of explained variation is 50% and the correlation is
0.98

2) The proportion of explained variation is 0% and the correlation is
—0.98
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3) The proportion of explained variation is 96% and the correlation is

-1
4) The proportion of explained variation is 96% and the correlation is
0.98
5) The proportion of explained variation is 96% and the correlation is
—0.98
|l Exercise 5.2 Linear regression life time model

A company manufactures an electronic device to be used in a very wide tem-
perature range. The company knows that increased temperature shortens the
life time of the device, and a study is therefore performed in which the life time
is determined as a function of temperature. The following data is found:

Temperature in Celcius (t) | 10 20 30 40 50 60 70 80 90
Life time in hours (y) 420 365 285 220 176 117 69 34 5

a) Calculate the 95% confidence interval for the slope in the usual linear re-
gression model, which expresses the life time as a linear function of the
temperature.

b) Can a relation between temperature and life time be documented on level
5%?

ll Exercise 5.3 Yield of chemical process

The yield y of a chemical process is a random variable whose value is considered
to be a linear function of the temperature x. The following data of correspond-
ing values of x and y is found:

Temperaturein°C(x) | 0 25 50 75 100
Yield in grams (y) 14 38 54 76 95
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The average and standard deviation of temperature and yield are
X =50, sy =39.52847, 7 = 55.4, sy, = 31.66702,
In the exercise the usual linear regression model is used

Y; =Bo+pixi+e, e ~N(O0Z), i=1,...5

a) Can a significant relationship between yield and temperature be docu-
mented on the usual significance level & = 0.05?

b) Give the 95% confidence interval of the expected yield at a temperature of
Xnew = 80 °C.

c) What is the upper quartile of the residuals?

lll Exercise 5.4 Plastic material

In the manufacturing of a plastic material, it is believed that the cooling time has
an influence on the impact strength. Therefore a study is carried out in which
plastic material impact strength is determined for 4 different cooling times. The
results of this experiment are shown in the following table:

Cooling timesinseconds (x) | 15 25 35 40
Impact strength in k] /m? (y) | 42.1 36.0 31.8 287

The following statistics may be used:

X = 28.75, i = 34.65, Syy = 368.75.

a) What is the 95% confidence interval for the slope of the regression model,
expressing the impact strength as a linear function of the cooling time?
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b) Can you conclude that there is a relation between the impact strength and
the cooling time at significance level & = 5%?

c) For a similar plastic material the tabulated value for the linear relation
between temperature and impact strength (i.e the slope) is —0.30. If the
following hypothesis is tested (at level & = 0.05)

HO : ‘31 = —0.30
H1 . ,Bl 7§ —0.30

with the usual t-test statistic for such a test, what is the range (for t) within
which the hypothesis is accepted?

lll Exercise 5.5 Water polution

In a study of pollution in a water stream, the concentration of pollution is mea-
sured at 5 different locations. The locations are at different distances to the
pollution source. In the table below, these distances and the average pollution
are given:

Distance to the pollution source (in km) | 2 4 6 8 10
Average concentration 11,5 102 103 9.68 9.32

a) What are the parameter estimates for the three unknown parameters in
the usual linear regression model: 1) The intercept (Bo), 2) the slope (B1)
and 3) error standard deviation (0)?

b) How large a part of the variation in concentration can be explained by the
distance?

c) What is a 95%-confidence interval for the expected pollution concentra-
tion 7 km from the pollution source?
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lll Exercise 5.6 Membrane pressure drop

When purifying drinking water you can use a so-called membrane filtration.
In an experiment one wishes to examine the relationship between the pressure
drop across a membrane and the flux (flow per area) through the membrane.
We observe the following 10 related values of pressure (x) and flux (y):

1 2 3 4 5 6 7 8 9 10
Pressure (x) | 1.02 2.08 2.89 4.01 532 583 726 796 9.11 9.99
Flux (y) 1.15 085 156 1.72 432 5.07 500 531 6.17 7.04

Copy this into R to avoid typing in the data:

D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)

)

a) What is the empirical correlation between pressure and flux estimated to?
Give also an interpretation of the correlation.

b) What is a 90% confidence interval for the slope B; in the usual regression
model?

c¢) How large a part of the flux-variation (Y}2, (y; — 7)?) is not explained by
pressure differences?

d) Can you at significance level & = 0.05 reject the hypothesis that the line
passes through (0,0)?
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e) A confidence interval for the line at three different pressure levels: x4, =
3.5 1B,  =50and x€. ., = 9.5 will look as follows:

new new
BO + 131 ’ xrlllew +Cy

where U then is either A, B or C. Write the constants Cy; in increasing
order.

lll Exercise 5.7 Membrane pressure drop (matrix form)

This exercise uses the data presented in Exercise 6 above.

a) Find parameters values, standard errors, t-test statistics, and p-values for
the standard hypotheses tests.

Copy this into R to avoid typing in the data:

D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)

b) Reproduce the above numbers by matrix vector calculations. You will
need some matrix notation in R:

— Matrix multiplication (XY): X/%*%Y

— Matrix transpose (X7): t (X)

— Matrix inverse (X~1): solve (X)

— Make a matrix from vectors (X = [x{;x3]): cbind (x1,x2)

See also Example 5.23.
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lll Exercise 5.8 Independence and correlation
Consider the layout of independent variable in Example 5.10,

a) Show that Sy, = 1"2'.(&”?1)).

Hint: you can use the following relations

. n(n+1)
=T
Lo, nn+1)2n+1)
Z:lZ_ e .

N
Il
N

b) Show that the asymptotic correlation between 3y and f; is

lim p,(Bo, f1) = _ﬁ-

n—o00 2

Consider a layout of the independent variable where n = 2k and x; = O fori <k
and x; = 1fork <i < n.

c) Find Sy, for the new layout of x.

d) Compare Sy, for the two layouts of x.

e) What is the consequence for the parameter variance in the two layouts?

f) Discuss pro’s and cons for the two layouts.
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Acronyms

ANOVA Analysis of Variance Glossary: Analysis of Variance

cdf cumulated distribution function Glossary: cumulated distribution function
CI confidence interval Glossary: confidence interval

CLT Central Limit Theorem Glossary: Central Limit Theorem
IQR Inter Quartile Range Glossary: Inter Quartile Range
LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function Glossary: probability density function
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