diff --git a/main_run_ml_.py b/main_run_ml_.py new file mode 100644 index 0000000000000000000000000000000000000000..f143fba8744ba9158bb2712963206afabf66a599 --- /dev/null +++ b/main_run_ml_.py @@ -0,0 +1,37 @@ +import os +import warnings +warnings.filterwarnings("ignore") + + +from kit.mics import * +from kit.Machine_learning import * + +data_path = 'data/' +results_path = 'results/' + + +params = 'default' +merge_list = 'no' +names_classifiers = 'default' +selected_material = 'all' + +selected_df = read_material_csv(data_path,merge_list,selected_material) + +#write setting to txt file +save_folder = 'results/' +if not os.path.exists(os.path.join(results_path,save_folder)): + os.makedirs(os.path.join(results_path,save_folder)) + print('Make new folder due to directory not exist') + +with open(os.path.join(results_path,save_folder,'setting.txt'),'w') as f: + for data,name in zip([names_classifiers,selected_material,merge_list,params],['names_classifiers','selected_material','merge_list','params']): + f.write(name) + f.write('\n') + f.writelines(str(data)) + f.write('\n,\n') + print(name,'\n',data,'\n','*'*30) + f.write(results_path) + +train_mymodel(selected_df, results_path, + names_classifiers=names_classifiers, + epochs=50,params=params,extra_cmt='default',fixseed=True)