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ABSTRACT

Recently, graph convolutional networks (GCNs) have been
demonstrated efficient in learning graph representations.
Regarding the down-sampling and up-sampling of non-
Euclidean data, most existing methods are flat and lack
robustness. We visualize the process of a state-of-the-art
work DiffPool, and develop a novel differentiable module
for upsampling called DiffUnpool. DiffPool and DiffUn-
pool learn soft cluster assignment for nodes via GCNs and
multi-layer perceptrons respectively. To address the graph
classification problem, based on DiffPool and DiffUnpool,
we further propose an end-to-end encoder-decoder architec-
ture, diff graph U-Net. Different from other U-shape models
before, diff graph U-Net learns node embeddings hierarchi-
cally, and collect global features in residual fashion. Our
experimental results show that our model yields an overall
improvement of accuracy on 4 different data sets, compared
with previous methods.

Index Terms— GCN, graph classification, hierarchical
pooling, U-Net

1. INTRODUCTION

Convolutional neural networks (CNNs)[1] have been proved
to have the considerable capability in many artificial intelli-
gence challenges, such as image classification, medical im-
age analysis, and natural language processing. Graph convo-
lutional Network (GCNs)[2] has drawn more and more atten-
tion in recent years. It is a kind of neural network that can be
applied in graphs directly, which provides a convenient way
for node-level, edge-level, and graph-level prediction tasks in
data represented by graphs, such as protein structures, social
graphs, and point clouds.

GCNs have been implemented in a wide variety of tasks.
Among them, a very important application is graph classi-
fication [3] [4], whose task is to make a prediction on la-
bels associated with entire graphs. Most existing methods
in this field work in a flat way: they are consist of an en-
coder architecture to generate embeddings for all the nodes in
the graph, and a global pooling module to fuse embeddings.
Traditional GCN architecture is not able to percept the hier-

archical information, that is, it ignores the hierarchical struc-
ture of graphs. What’s worse, even in some existing methods
with hierarchical feature extraction[5], there are many prob-
lems, where one noticeable is that the deep encoder archi-
tecture in these networks reduces the robustness and limits
the performance of the method. It prevents the GCN models
from further improvement, and it may even lead to network
performance degradation. One possible solution is U-shape
graph network. [6] introduces a novel graph U-Net, but with
global pooling, the way lack of hierarchical learning. In addi-
tion, due to large-scale computations, GCNs are always time-
consuming and computationally expensive.

With these in mind, in order to improve GCN’s perfor-
mance in graph classification scenario, here we propose a
novel end-to-end differentiable graph unpooling operation
(DiffUnpool). Based on the pioneering work[5] and Dif-
fUnpool, we develop a U-shape network architecture for
graph classification. In this framework, differentiable pooling
modules (DiffPool), together with GCN modules, generate
embeddings and coarsen the graph hierarchically. DiffUn-
pool modules are stacked to restore the graph to its original
structure, with the help of embeddings from the previous
DiffUnpool module, and from the corresponding DiffPool
module. After that, embeddings of each node are aggregated
together and then sent to a classifier. Experimental results
demonstrate that our proposed model outperforms previous
methods.

2. RELATED WORK

Graph classification with graph convolutional networks.
There are a bunch of applications of GCNs, including node
classification, link prediction and graph classification. Among
them, Node classification is similar to the pixel-wise segmen-
tation task in grid-like data, such as images. Graph classifica-
tion is to make a prediction on labels associated with graphs.
It’s analogous to image classification. Many GCNs have been
proposed to solve graph classification problems[4][5][7].
Most of these methods follow the general ”message-passing”
architecture developed by [2][8], in which the layer-wise



forward-propagation operation in the l-th layer is defined as:

El+1 = GCN(A,El,Wl) = σ(D̃− 1
2 ÃD̃− 1

2ElWl) (1)

, where El and El+1 are the input and output node embed-
dings of the layer, Ã = A + I is summation of the input
adjacency matrix A and an identity matrix I , D̃ =

∑
j Ãij is

a diagonal node degree matrix to normalize Ã, σ is an activa-
tion function, and Wl is a trainable weight matrix.

Node embeddings are feature vectors correspond with
each node in a graph. The original embeddings put into the
network are decided by the graph data. They could be co-
ordinates of point clouds, types of atoms in a molecule or
user features in a social graph. It should be noted that the
one-hot encoded labels for node classification, e.g., types
of molecules in a protein molecule, can be used as node
embeddings in graph classification. It’s also noticeable that
in ”message-passing” architecture, we do not consider edge
features, even though one can easily extend the algorithm to
support them.

Pooling in graph convolutional networks. It’s proved
by many studies[5][9][10] that pooling plays an important
role in GCNs. Amongst them, an interesting work would
be DiffPool[5], a differentiable graph pooling module anal-
ogous to spatial pooling operation in CNNs. Via constructing
assignment matrix, DiffPool can be deployed in end-to-end
GCN architectures in a hierarchical fashion. The cluster as-
signment matrix Sl ∈ Rnl×nl+1 , where nl and nl+1 are node
numbers in layer l and l+1, can be considered as a soft clus-
tering of each node at layer l to the next coarsened layer l+1.
Given the l-th DiffPool module in a network, the assignment
matrix S is computed by:

Sl = softmax(GCNpool(Al, El,W
p
l )) (2)

, where GCNpool operation is described by equation 1, Al ∈
Rnl×nl , El ∈ Rnl+1×d and W p

l are the input adjacency ma-
trix, node embeddings and trainable weight matrix in this
layer. softmax is implemented to normalize the assignment
matrix. d is the feature size of node embeddings.

With the help of assignment matrix, the adjacency matrix
and node embeddings are updated as:

Al+1 = ST
l AlSl,∈ Rnl+1×nl+1 (3)

El+1 = GCNemb(Al+1, S
T
l El,W

e
l ),∈ Rnl+1×d (4)

Note that since GCNpool and GCNemb are two independent
GCN modules, their weight matrix W p

l and W e
l are different.

U-Nets and Graph U-Nets. Encoder-decoder architec-
tures such as the U-Net[11] are state-of-the-art methods for
image segmentation, due to their efficiency and robustness.
Regarding graph data, [6] proposes Graph U-Nets (g-U-Nets)
for node classification and graph classification in 2019. In
g-U-Nets, when pooling, nodes are sampled by gPool, to gen-
erate a smaller graph. gPool is a global pooling based on 1D

footprint of each node. Node embeddings are projected to
1D space by a trainable vector. Nodes with top-k values in
the scalar projection, are selected to construct the new graph.
The new adjacency matrix and node embeddings are formed
by row/column extraction and GCNs respectively. Selected-
node index from each gPool layer is stored and then used by
the corresponding unpooling layers, to reconstruct the orig-
inal graph structure by adding empty embeddings for unse-
lected nodes. It’s clear that g-U-Nets follows a flat way when
pooling and unpooling graphs.

3. DIFF GRAPH U-NET

Fig. 1. Diff graph U-Net architecture

3.1. Differentiable unpooling module

Traditional up-sampling methods, e.g., deconvolution, are not
applicable in graph data. Inspired by DiffPool, to develop
a differentiable end-to-end graph-based encoder-decoder ar-
chitecture, we propose the Differentiable unpooling module
(DiffUnpool). DiffPool works as encoders in the network, to
reduce feature map size and increase receptive field, while
DiffUnpool plays the role of decoders, to reconstruct original
graphs.

There are two GCNs in a DiffPool module, given by equa-
tion 2 and 4, leading to a considerable computational cost.
For this reason, our DiffUnpool module is not simply an in-
verse operation of DiffPool. In layer l, the assignment ma-
trix Sl,up ∈ Rnl×nl+1 is updated by a multi-layer perceptron
(MLP)[12], MLPs, as:

Sl,up = softmax(MLPs(S
T
l,pool)) (5)

, where Sl,pool ∈ Rnl+1×nl is the assignment matrix from the
corresponding pooling layer. For example, the first layer in
unpooling process is related to the last layer in the pooling
process.

The new adjacency matrix Al+1 is also computed by a
MLP, MLPa, as:

Al+1 =MLPa(S
T
l,upAlSl,up) (6)

, where Al is the adjacency matrix from the previous layer.



To exploit graph representation, we employ a GCN to
learn the topological information and generate node embed-
dings El+1:

El+1 = δ(GCN(Al+1, S
T
l,upEl,Wl)) (7)

, where El stands for the input node embeddings of layer l. It
does not represent node embeddings from the previous layer,
but the output of skip connection, which would be mentioned
later. Wl is a trainable matrix. δ means attention operation,
it’s defined as:

δ(x) = softmax(x) · x (8)

, x is an arbitrary input vector. [10][13] have proved that at-
tention mechanism improves deep neural networks’ perfor-
mance.

In the DiffUnpool module, compared with DiffPool, we
replace one GCN with two independent MLPs. Ablation ex-
periments demonstrate that not only training speed, but also
the model performance has been ameliorated due to the re-
placement.

3.2. Network architecture

By stacking DiffPool and DiffUnpool modules, we develop a
differentiable graph U-Net, as illustrated in figure 1.

Skip connection Skip connection is an important trick in
U-Net to avoid potential information loss resulted from deep
convolution. In diff graph U-Net, we implement skip connec-
tion for the same reason, but in a slightly different way.

Regarding the DiffUnpool layer l, we denote node em-
beddings from its previous layer as El−1,up ∈ Rnl,up×d and
those from its corresponding pooling layer asEl,p ∈ Rnl,p×d,
where d is the feature size of node embeddings, nl,up and
nl,p are node number in the two layers respectively. If we set
down-sampling and up-sampling ratio the same, nl,up would
be equal to nl,p. By skip connection, El is defined as:

El =MLP (El−1,up ⊕ El,p) ∈ Rnl,p×2d (9)

, where ⊕ means concatenation operation. Note that in most
references, the output of the skip connection has the same size
as the input feature vectors. That is, El ∈ Rnl,p×d. However,
in our case, the feature size increases over the unpooling pro-
cess. Objectively speaking, our implementation increases the
computational cost, whereas it keeps information in a higher
degree.

Reconstruction loss Regarding graph classification prob-
lem, encoder-decoder architecture is implemented to generate
a new graph structure that is slightly different from the origi-
nal graph, to improve model robustness. Reconstruction loss
is used to measure the similarity of the restored graph struc-
ture and the original one. We define the reconstruction loss
as:

lossRC = ||AL −A0||1/n0
2 (10)

, where AL ∈ Rn0×n0 and A0 ∈ Rn0×n0 are the adjacency
matrix from the last unpooling module in U-Net, and that of
the original graph, respectively. They have the same size.

During training, Lrcs is added to the classification loss.
The overall loss is defined as:

loss = (1−λ)·(lossCE+lossE+lossLP )+λ·lossRC (11)

, where lossCE is cross-entropy loss for classification, lossE
and lossLP are entropy regularization loss and link predic-
tion loss from [5]. They work as auxiliaries to stabilize the
training. The reconstruction factor λ ought to stay at a low
value. An extremely-high λ may weaken the role of U-Net:
the input and output of U-Net tend to be the same.

Global feature aggregation After a bunch of DiffPool
and DiffUnpool modules, the input graph of U-Net is encoded
and decoded to a new graph. To solve graph classification
problem, we employ a GCN block, shown in figure 2, to cap-
ture the topological information in the new graph. We call it
global feature aggregator. The block consists of two GCNs in
residual fashion[14]. Given an input graph G, adjacency ma-
trix A and node embeddings E, the output of the two GCNs
and the block would be:

E1 = GCN1(A,E,W1) (12)

E2 = GCN2(A,E1,W2) (13)

Eo = E + E2 (14)

, where W1 and W2 are weight matrix.

Fig. 2. Global feature aggregator

Residual structure helps improve model performance and
avoid potential network degradation. After the global feature
aggregator, graph embedding goes through a fully-connected
layer and is then put into softmax function to make the final
prediction.

4. EXPERIMENTS

We evaluate our networks with previous state-of-the-art mod-
els on node classification.

Datasets We use four different data sets for graph classi-
fication to probe the ability of Diff graph U-Net. D&D[15]
consists of 1178 protein structures. Each protein is repre-
sented by a graph. These proteins are labeled as enzymes



or non-enzymes. ENZYMES[16] is a data set describing pro-
tein tertiary structures. It includes 600 graphs from 6 enzyme
classes. Peking 1[17] contains 85 compounds from female
rats. Each compound is labeled by whether its carcinogenic
activity would cause cancer or not. PROTEINS[18] revolves
1113 protein structures from the Protein Data Bank. Sim-
ple features such as secondary-structure content, amino acid
propensities, surface properties and ligands are used as node
embeddings. The data set also has two different classes, en-
zymes and non-enzymes.

Baseline model We employ a GCN network including
three DiffPool modules as the baseline. Regardless of size,
the input graph is first down-sampled or up-sampled to 1000
nodes, and then pooled three times, with an assignment ra-
tio of 10% at each time. After the DiffPool modules, there is
only one node in the graph. We regard the node embedding as
the graph’s global features and deploy the softmax function to
make a prediction. ReLU[19] works as the activation function
in GCNs.

Diff graph U-Net Based on the architecture proposed in
section 3.2, we build a diff graph U-Net consist of 3 DiffPool
modules and 3 DiffUnpool modules. The pooling and unpool-
ing ratio are set the same. For D&D and ENZYMES, the ratio
is 50% and for the rest two, the ratio is 10%. To avoid over-
fitting, we apply L-2 regularization on weights. Dropout[20]
is applied to global feature aggregator. Their hyperparameters
are fine-tuned on each data set. Apart from these, SELU[21]
replaces ReLU as the activation function in GCNs, due to its
contribution to model convergence. Plus, the reconstruction
factor λ in equation 11 is set 0.1.

4.1. Visualization of DiffPool

(a) Raw Graph (b) Sampled Graph

Fig. 3. Up-sampling: initialization

Before evaluation, we visualize the topological representation
change of a graph in the baseline model, to illustrate what is
happening inside our networks.

We pick one graph randomly from the D&D data set,
which is presented in figure 3. The left one is the raw graph
including 288 nodes and 757 edges, while the right one is

the up-sampled graph, with 1000 nodes inside, where the 712
fill-in ones are colored green.

In the DiffPool module, an assignment matrix is deployed
to soft assign nodes into different clusters. Rather than that
in hard clustering, which means each node belongs to a de-
termined group, in soft clustering, each node has a different
probability to be allocated to various clusters, and its embed-
ding is distributed into the clusters according to the probabil-
ity.

Hard clustering is usually easier to visualize and under-
stand. If we assign each node to the cluster with the highest
probability, then the process would be hard clustering. The
assignment result is demonstrated in figure 4. In the left fig-
ure, 100 nodes in 42 clusters are in different colors. In the
right chart, node embeddings in each cluster are fused as 42
cluster embeddings, which are deemed to be the outputs of
the pooling operation.

Fig. 4. Hard Assignment in the second DiffPool module

Fig. 5. Soft Assignment in the second DiffPool module

However, since it’s very inflexible to assign each node to
one cluster completely, and it’s impossible to ensure group
number in the hard assignment, in DiffPool module, soft clus-
tering is employed. In the soft assignment, node embeddings
are assigned to a given number of groups with respect to the
assignment matrix, described by the equation 4. Each node
has contributions to each cluster. In figure 5, the left chart il-
lustrates the output graph of the first pooling module, which
contains 100 nodes. The right pie chart shows the contribu-
tion of one node to the ten clusters. It’s actually one row in



the assignment matrix.

Fig. 6. Visualization of baseline pipeline

Figure 6 demonstrates the complete execution process of
the baseline model. The input graph is pooled three times
with a down-sampling rate of 10%, until there is only one
node in the graph. Nodes in each module correspond with
clusters in the previous module. After the last module, the
node’s feature vector, also called graph embedding, is sent
into a classifier to make the final prediction.

4.2. Results for graph classification

We compare the performance of Diff Graph U-Net to the
baseline. Each model is trained for 100 epochs and early
stopping[22] is applied. The batch size is set to 20. Table 1
presents the accuracy results of the two methods on different
data sets. 10-fold cross-validation is employed to convince
accuracy. The final result is the average accuracy over the 10
iterations. Xavier initialization[23] is implemented.

Data sets Classes Method
Baseline Diff graph U-Net

D&D 2 79.49 85.47
ENZYMES 6 55.00 58.33

Peking 1 2 77.6 87.5
PROTEINS 2 77.78 88.89

Table 1. Accuracy results of the two models

We observe that the diff graph U-Net outperforms the
baseline model on all the four data sets. Regarding binary
classification problems(D&D, Peking 1 and PROTEINS),
diff graph U-Net has obviously better performance. Experi-
ment results demonstrate that diff graph U-Net has an overall
improvement over the previous methods1.

Shall we completely owe the results to the increase of
trainable parameters?2 Since diff graph U-Net outperforms
the baseline model on a small-scale data set, Peking 1, with-
out severe over-fitting and degradation, we believe that there

1We also compare our accuracy results with those from graph U-Net[6].
On D&D and PROTEINS, graph U-Net reaches an accuracy of 82.43% and
77.68%, lower than diff graph U-Net’s 85.47% and 88.89%.

2The baseline model has 3 modules while in diff graph U-Net, the number
is 6.

are factors other than parameter number in the structure im-
proving the model performance. Neural networks are not al-
ways the deeper, the better.

5. DISCUSSION

5.1. Limitations

There are many limitations to our work. Because of the
time limit, we haven’t done all the ablation experiments and
therefore not able to show them in the report. In addition,
even though in the network structures, MLPs replace GCNs
in many places to reduce computation, diff graph U-Net
still costs a long time to train. More specifically, the time
diff graph U-Net takes is roughly two times as long as that
consumed by the baseline model.

Plus, one of our observations is that diff graph U-Net
could be very unstable to train. There is considerable vari-
ation in accuracy results across different runs, even with
the same hyperparameter setting. It’s the reason behind our
choice of 10-fold cross-validation.

Diff graph U-Net does not well in multi-class classifica-
tion problem on ENZYMES, which is also an aporia in this
field at present.

5.2. Further Work

Interesting future directions may include the following points,
based on our current work.

• Develop a computational-efficient and light-weight net-
work structure based on present work. Replacing soft
assignment with hardware-friendly Hard assignment is
a potential way.

• Apply diff graph U-Nets in other tasks. U-Net is de-
signed for image segmentation originally. Diff graph
U-Net ought to be more suitable for solving similar
problems such as node classification.

• Employ data argumentation. The diff graph U-Net
could be very unstable to train. One of the reasons is
the small size of the data set. By deploying diff graph
U-Net as a generator, we plan to develop a Siamese
network for graph data argumentation.

• Study the relationship between U-Net’s depth and its
ability.

6. CONCLUSION

We propose a differentiable end-to-end encoder-decoder net-
work, diff graph U-Net, for graph classification. It pools and
unpools graph hierarchically and outperforms many former
methods. To have a deeper glance into our work, check our
Github repository.

https://github.com/mmmmimic/02456-deep-learning-final-projektet
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