Emulation — Color

Introduction

The current implementation of PyBoy only supports the original black-and-white Game Boy
from 1989. The Game Boy Color shares almost all of the same architecture of the original
Game Boy, but adds a little more memory, a modified video controller and double the CPU
frequency. The current implementation trivially supports doubling the CPU speed, so this
won’t be an issue.

The details are described in the Pan Docs!

Tasks

Read and find documentation The Pan Docs should provide all the needed information
about the internals of the Game Boy, but sometimes, more information is needed. Read
the Pan Docs, and look for other possible sources online. Maybe even look at other
emulators for inspiration.

Look at the current implementation Current video rendering is performed in SDL2 on
all platforms, and SDL2 should provide the needed support for color. Look through
the current implementation and familiarize yourself with the code.

Change PyBoy to make it start a GBC ROM The Game Boy ROMs do a few checks
to determine it is on Game Boy Color (GBC) hardware. If these checks fail, it shows
a warning and stops. Find these checks in the Pac Docs, and modify PyBoy to make
it past the non-color warning message.

Add the extra memory The Game Boy Color had more memory than the original Game
Boy. Add these extra memory banks to the system, and the control register (see FF4F
in Pan Docs). Memory banks are present multiple places already, so it won’t be hard
to implement.

Modify the video renderer Add the needed functionality for the emulator to read the
color data when rendering. Also add the functionality of the special registers, which
controls the color palettes.

Final polishing and testing Perform some tests to verify the solution. This includes test
ROMs, which verify the interaction with the new registers, but also practical game
tests. If possible, compare the video output produced to a physical Game Boy Color.

Conclude results Sum up what works, and what didn’t work, and what should be done
by the developer, who takes over.

"http://bgb.bircd.org/pandocs . htm#videodisplay


http://bgb.bircd.org/pandocs.htm##videodisplay

Emulation — Link Cable

Introduction

The current implementation of PyBoy lacks support for the Link Cable. The Link Cable was
a primitive serial connection between two Game Boys. It was used to play against others
ete.

The details are described in the Pan Docs?

Tasks

Read and find documentation The Pan Docs should provide all the needed information
about the internals of the Game Boy, but sometimes, more information is needed. Read
the Pan Docs, and look for other possible sources online. Maybe even look at other
emulators for inspiration.

Look at the current implementation The current code simply prints out the data being
pushed to the serial port. But look at the code for the motherboard, and look how
special registers are implemented.

Determine what is possible The way data is transferred, presents some problems for
TCP/UDP Link Cable emulation. Investigate if it is possible to do this over a network,
under which circumstances it might be, or if both emulators need to be on the same
computer.

Implement registers and internal clock Two registers are used for the Link Cable. One
for control and one for data. Implement both, and the accompanied “Internal Clock”,
which defines the connection speed.

Implement emulation layer Emulate the Link Cable in the way you found appropriate
earlier. This might include one or more implementations, for games which uses the
Link Cable differently.

Final polishing and testing Perform some tests to verify the solution. This might include
test ROMs, which verify the interaction with the new registers, but also practical game
tests.

Conclude results Sum up what works, and what didn’t work, and what should be done
by the developer, who takes over.

’http://bgb.bircd.org/pandocs . htm#serialdatatransferlinkcable


http://bgb.bircd.org/pandocs.htm##serialdatatransferlinkcable

Experimental — Al

Introduction

This is not a Game Boy feature itself, but something that is easier to approach through
emulation. What I imagine, is a neural network — or maybe a simple, handwritten bot —
which can play the Game Boy autonomously.

PyBoy already supports external controls to report objects on the screen and sending
input to the Game Boy®. It supports running at unlimited speed and without rendering the
display to speed up the learning process.

The details of the Game Boy are described in the Pan Docs*

There are already examples of other people implementing Als for console games® 6.

Tasks

Read and find documentation The Pan Docs should provide all the needed information
about the internals of the Game Boy, but sometimes, more information is needed. Read
the Pan Docs, and look for other possible sources online. Maybe even look at other
emulators for inspiration.

Look at the current implementation Have a look at the ‘botsupport® module in PyBoy
and see if it has the needed functionality. If it doesn’t, it is easy to extend it. There is
also a crude Tetris bot to get inspiration from.

Figure out a method If you decide to solve the task using machine learning, search online
for a fitting software package to help with it — maybe Tensorflow or PyTorch will
work. Create a prototype to find out what is needed to connect the machine learning
framework and PyBoy.

Implement the algorithm When you've found an appropriate method, try to implement
it, and see if it can work.

Conclude results Sum up what works, and what didn’t work, and what should be done
by the developer, who takes over.

Shttps://github.com/Baekalfen/PyBoy/wiki/Scripts-and-Bots
“http://bgb.bircd.org/pandocs.htm

Shttps://www.youtube. com/watch?v=qv6UVOQOF44
Shttps://www.youtube.com/watch?v=iakFf0OmanJU


https://github.com/Baekalfen/PyBoy/wiki/Scripts-and-Bots
http://bgb.bircd.org/pandocs.htm
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=iakFfOmanJU

Experimental — Bot Support

Introduction

This is not a Game Boy feature itself, but something that will make AI/bots work easier.
What I imagine, is a set of wrappers (objects) which present an easy interface to popular
games. For example a Super Mario Land wrapper, which quickly identifies enemies, Mario,
boundaries, score, time left and so on, for the developer of the Al/bot”.

To make it easier to identify important RAM addresses, it might also be interesting to
make a memory scanner, which can help identify changed values or exact searches®.

PyBoy already supports external controls to report objects on the screen and sending
input to the Game Boy”. It supports running at unlimited speed and without rendering the
display to speed up the learning process.

The details of the Game Boy are described in the Pan Docs!”

Tasks

Read and find documentation The Pan Docs should provide all the needed information
about the internals of the Game Boy, but sometimes, more information is needed. Read
the Pan Docs, and look for other possible sources online. Maybe even look at other
emulators for inspiration.

Look at the current implementation Have a look at the ‘botsupport’ module in PyBoy
and see if it has the needed functionality. If it doesn’t, it is easy to extend it. There is
also a crude Tetris bot to get inspiration from.

Figure out a method Figure out how to best represent the data on the screen for the
AI/bot developer. Find the best performing way to extract the necessary information
from PyBoy — use the BotSupport module as much as possible. If PyBoy lacks the
necessary features, figure out how to build an extension.

Implement the algorithm When you’ve found an appropriate method, try to implement
it, and see if it can work.

Conclude results Sum up what works, and what didn’t work, and what should be done
by the developer, who takes over.

"https://github.com/Backalfen/PyBoy/issues/73

Shttps://github.com/Baekalfen/PyBoy/issues/72

“https://github.com/Baekalfen/PyBoy/wiki/Scripts-and-Bots
Ohttp://bgb.bircd.org/pandocs.htm


https://github.com/Baekalfen/PyBoy/issues/73
https://github.com/Baekalfen/PyBoy/issues/72
https://github.com/Baekalfen/PyBoy/wiki/Scripts-and-Bots
http://bgb.bircd.org/pandocs.htm

Completed Projects



Experimental — Rewind Time

Introduction

This is not a Game Boy feature itself, but something we can do when emulating. I imagine
a feature, where it is possible to go back in time and redo something that went wrong in
the game. It could be fine-grained at CPU-cycle level, less fine at each produced frame (60
FPS), or coarse at larger intervals. It depending on what is possible to implement.

The details of the Game Boy are described in the Pan Docs!'!

There are already examples of other people implementing a rewind feature!?.

Tasks

Read and find documentation The Pan Docs should provide all the needed information
about the internals of the Game Boy, but sometimes, more information is needed. Read
the Pan Docs, and look for other possible sources online. Maybe even look at other
emulators for inspiration.

Look at the current implementation Familiarize yourself with the PyBoy code base
and look for a good place to implement the feature, and at which granularity it is
possible.

Figure out an algorithm How is the data of each level of granularity going to be stored,
and how is it going to be loaded? Will you track changes on a byte-level, or simply
save large chunks of memory at an interval? How much space will it use, and how will
it be managed? Is compression needed?

Implement the algorithm When you've found an appropriate algorithm, try to imple-
ment it in PyBoy. See if there are any unexpected issues.

Final polishing and testing Perform some tests to verify the solution. This might include
test ROMs, which tests the system integrity in general, while the time is rewinded, but
also practical game tests.

Conclude results Sum up what works, and what didn’t work, and what should be done
by the developer, who takes over.

"http://bgb.bircd.org/pandocs.htm
2https://binji.github.i0/2017/12/31/binjgb-rewind.html


http://bgb.bircd.org/pandocs.htm
https://binji.github.io/2017/12/31/binjgb-rewind.html

Emulation — Sound

Introduction

The current implementation of PyBoy does not emulate the built-in sound controller.
The sound controller supports 4 primitive types of tone and noise generators. These are
described in detail in the Pan Docs'3.

Tasks

Read and find documentation The Pan Docs do provide a lot of information about the
internals of the Game Boy, but sometimes, more information is needed. Read the Pan
Docs, and look for other possible sources online. Maybe even look at other emulators
for inspiration.

Find library, which supports the requirements Current video rendering is performed
in SDL2 on all platforms, and SDL2 should provide support for sound as well. See if
SDL2 has the required functionality to implement the tone generators. Alternatively,
find a way for Python to generate the sound as needed.

Implement prototype in standalone Python script It might be hard to implement
the emulated sound controller directly into PyBoy. I recommend to implement it
separately, if it is too big of a task to do both at once.

Find test ROMs or games for reference To consistently debug the sound controller,
you should find some dedicated test ROMs or a game which has simple sound usage.
This will make it easier to debug possible issues. We will later test on games with
complex sounds.

Modify PyBoy to support the sound control registers The Game Boy interfaces with
the sound controller through some dedicated registers in memory (see Pan Docs). These
will need to be implemented and hooked up to a placeholder for the sound controller
code.

Move the prototype into PyBoy When the registers are in place, move the prototype
into the Game Boy and see if we can produce sound. Test if there are any oversights
in the implementation, and keep improving the code until it works.

Final polishing and testing Perform some tests to verify the solution. This includes test
ROMSs, which verify the interaction with the sound control registers, but also listening
tests. If possible, compare the sounds produced to a physical Game Boy.

Conclude results Sum up what works, and what didn’t work, and what should be done
by the developer, who takes over.

Bhttp://bgb.bircd.org/pandocs . htm#soundcontroller


http://bgb.bircd.org/pandocs.htm##soundcontroller

