diff --git a/doc/epoch1.PNG b/doc/epoch1.PNG
index 64fc635fcdee68f2a8b896aa8ddf2a9aa10c60ef..6c82ef86976f451ccab44b58a218d1bdaf72761c 100644
Binary files a/doc/epoch1.PNG and b/doc/epoch1.PNG differ
diff --git a/doc/epoch10.PNG b/doc/epoch10.PNG
index 06e7337ba3a1b88e576853256154d3aab0b7eba1..ee2fe98a506b97745b3fa918491db5a8a8512cba 100644
Binary files a/doc/epoch10.PNG and b/doc/epoch10.PNG differ
diff --git a/doc/epoch30.PNG b/doc/epoch30.PNG
index f83838178c004bd0a19046bdaf2c2657d585e6ae..3e874a5ca1e349647af9961d2f56b71aed6d8ff7 100644
Binary files a/doc/epoch30.PNG and b/doc/epoch30.PNG differ
diff --git a/doc/epoch5.PNG b/doc/epoch5.PNG
index 8e39f21181cd8a7d8e11c82fca2c0e6494e29f14..add5b234ccaa98e79fe16a8a255b976e759ceb88 100644
Binary files a/doc/epoch5.PNG and b/doc/epoch5.PNG differ
diff --git a/train.py b/train.py
index 5294b28309f5a5d56304aa502e8cbf93148da7bd..f50d18b4006ae69c55c734c164db053d958d21a3 100644
--- a/train.py
+++ b/train.py
@@ -105,7 +105,6 @@ if __name__ == "__main__":
     
     # Train Setting
     model_optim = Adam(model.parameters(), 0.0001, (0.5, 0.9))
-    discrim_optim = Adam(model.discrim.parameters(), 0.0004)
     
     ### Train
     for epoch in range(initial_epoch, epochs):
@@ -138,10 +137,9 @@ if __name__ == "__main__":
             Ldsn = torch.mean(F.relu(1-model.discrim(Mm, Itegt))) + \
                 torch.mean(F.relu(1+model.discrim(Mm, Ite_)))
                           
-            discrim_optim.zero_grad()
+            model_optim.zero_grad()
             Ldsn.backward()
-            discrim_optim.step()
-            
+            model_optim.step()
             
             ltsd = Ltsd.detach().cpu().item()
             ltrg = Ltrg.detach().cpu().item()
@@ -180,26 +178,30 @@ if __name__ == "__main__":
             pgbar.set_postfix_str(f"loss : {sum(val_loss[-10:]) / len(val_loss[-10:]):.6f}")
             
             if len(result_images) < args.show_num:
-                result_images.append([I.cpu(), Itegt.cpu(), Ite_.cpu(), Msgt.cpu(), Ms_.cpu()])
+                result_images.append([I.cpu(), Itegt.cpu(), Ite.cpu(), Ite_.cpu(), Msgt.cpu(), Ms.cpu(), Ms_.cpu()])
             else:
                 break
         
         val_loss = sum(val_loss) / len(val_loss)
         
         ## visualize
-        fig, axs = plt.subplots(args.show_num, 1, figsize=(5, 2*args.show_num))
-        fig.suptitle("Image, Gt, Gen, Stroke Gt, Stroke")
-        for i, (I, Itegt, Ite_, Msgt, Ms_) in enumerate(result_images):
+        fig, axs = plt.subplots(args.show_num, 1, figsize=(10, 2*args.show_num))
+        fig.suptitle("I, Itegt, Ite, Ite_, Msgt, Ms, Ms_]")
+        for i, (I, Itegt, Ite, Ite_, Msgt, Ms, Ms_) in enumerate(result_images):
+        
             I = postprocess_image(tensor_to_mat(I))[0]
             Itegt = postprocess_image(tensor_to_mat(Itegt))[0]
+            Ite = postprocess_image(tensor_to_mat(Ite))[0]
             Ite_ = postprocess_image(tensor_to_mat(Ite_))[0]
             Msgt = postprocess_image(tensor_to_mat(Msgt))[0]
+            Ms = postprocess_image(tensor_to_mat(Ms))[0]
             Ms_ = postprocess_image(tensor_to_mat(Ms_))[0]
             
             Msgt = cv2.cvtColor(Msgt, cv2.COLOR_GRAY2BGR)
+            Ms = cv2.cvtColor(Ms, cv2.COLOR_GRAY2BGR)
             Ms_ = cv2.cvtColor(Ms_, cv2.COLOR_GRAY2BGR)
             
-            axs[i].imshow(np.hstack([I, Itegt, Ite_, Msgt, Ms_]))
+            axs[i].imshow(np.hstack([I, Itegt, Ite, Ite_, Msgt, Ms, Ms_]))
             axs[i].set_xticks([])
             axs[i].set_yticks([])