diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index b71b40ead6ad414ee4717de6aa0c68a453dc68c2..a71bfa9e4ed0c740ae2be24fae46fb9ac8b49e60 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -1,19 +1,25 @@ -image: python:latest +image: python:3.9-slim-bullseye -# variables: -# PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip" +# Change pip's cache directory to be inside the project directory since we can +# only cache local items. +variables: + PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip" -# cache: -# paths: -# - .cache/pip -# - venv/ +# Pip's cache doesn't store the python packages +# https://pip.pypa.io/en/stable/topics/caching/ +# +# If you want to also cache the installed packages, you have to install +# them in a virtualenv and cache it as well. +cache: + paths: + - .cache/pip + - venv/ -# before_script: -# - python -V -# lav venv miljø med venv, ikke virtualenv -# - pip install virtualenv -# - virtualenv venv -# - source venv/bin/activate +before_script: + - python --version ; pip --version # For debugging + - pip install virtualenv + - virtualenv venv + - source venv/bin/activate pages: script: @@ -24,5 +30,9 @@ pages: paths: - public expire_in: 4 weeks + tags: + - runner1 only: - main + +# DO deploy diff --git a/pg_cs/weeks/week1.md b/pg_cs/weeks/week1.md index 7c7f692697a5811542d1efa8c3e78cacb4a9ee22..c74b9e21ead093a416fd8ef8469ead8b7256c562 100644 --- a/pg_cs/weeks/week1.md +++ b/pg_cs/weeks/week1.md @@ -3,7 +3,7 @@ Today we shall explore the algebraic rules of real numbers already known from high school. We will recap on the relevant rules and then look at how they unfold on the larger set of complex numbers. How is problem solving carried out when switching from a solely real to a complex context? <div> -<iframe src="https://panopto.dtu.dk/Panopto/Pages/Embed.aspx?id=3b8edf2f-6c34-4f10-bea6-af9e00c4bae5&autoplay=false&offerviewer=true&showtitle=true&showbrand=false&captions=false&start=0&interactivity=none" height="405" width="720" style="border: 1px solid #464646;" allowfullscreen allow="autoplay"></iframe> +<iframe src="https://panopto.dtu.dk/Panopto/Pages/Embed.aspx?id=e84b6235-30be-44dd-b388-af9d011333f4&autoplay=false&offerviewer=true&showtitle=true&showbrand=false&captions=false&start=0&interactivity=none" height="405" width="720" style="border: 1px solid #464646;" allowfullscreen allow="autoplay"></iframe> </div> Properties of real numbers and of complex numbers. The hierarchy of the arithmetic rules. Brackets. Fractions. The square theorems. The Pythagorian Theorem. The quadratic formula. Absolute values. Number sets and their symbols. diff --git a/pg_cs/weeks/week2.md b/pg_cs/weeks/week2.md index 89d9fcaeea43271aaf8bbbbca29c38843dfea023..dd5f49c04a38991d048522627e0407bb32f9dbbc 100644 --- a/pg_cs/weeks/week2.md +++ b/pg_cs/weeks/week2.md @@ -3,7 +3,7 @@ The first semester of Advanced Engineering Mathematics 1 is a coherent course in **linear algebra** and **linear differential equations**. Complex numbers and elementary complex functions are an important part of the basis for this theory. Therefore the first few weeks of the course are dedicated to the study of complex numbers. Today we will introduce the complex numbers as a new set of numbers belonging to the well-known family of number sets and we will work out how to write a complex number in its so-called *rectangular form*. <div> -<iframe src="https://panopto.dtu.dk/Panopto/Pages/Embed.aspx?id=3193233b-9d27-4668-91b3-afa3009419a1&autoplay=false&offerviewer=true&showtitle=true&showbrand=false&captions=false&start=0&interactivity=none" height="405" width="720" style="border: 1px solid #464646;" allowfullscreen allow="autoplay"></iframe> +<iframe src="https://panopto.dtu.dk/Panopto/Pages/Embed.aspx?id=e84b6235-30be-44dd-b388-af9d011333f4&autoplay=false&offerviewer=true&showtitle=true&showbrand=false&captions=false&start=0&interactivity=none" height="405" width="720" style="border: 1px solid #464646;" allowfullscreen allow="autoplay"></iframe> </div> First and foremost it is important to practise computations with complex numbers to become familiar with them so they won't be dreaded when they show up in future mathematical topics.