Robust () learning

Tue Herlau

November 16, 2022

1 Introduction

The work is an extension of [LBBT22]. The idea is fairly straight-forward.
The Q-update which is robust within a KL distance of ¢ is given as a mini-
mization problem. The implementation, however, really sucks.

We try to fix this by decompositing the value function. Let the temporal
observations be:

Lo, Ty, (1)
We define a state as a block of K of these:
St = Ti—K+1:t (2)
This means that the transition probability of the states is partly deterministic
as the first K — 1 elements are simply copied into the last K — 1 elements of
the next state.

Let 8, = o4_g114-1 and s; = s = [§ :L‘} Then we parameterize the
optimal value function V'(s) as a quadratic function:

1 . 2
+ QJU—(é)Q(M(S) —) (3)

We also assume that the transition dynamics is jointly Gaussian, viz.:
po(s']s,a) = N’ (s,a), 07 (s, a)?) (4)

1

1.1 Bellman operator

The bellman operator defined in the main reference is:

Ti(@Q)(s,0) = r(s, @) + ysup { —Alog (Byy, [5 @0]) — g5} (5)

B8=0 ‘

This parametrization now allows us to solve the integral and get an ex-
plicit expression for the minimization problem. The integral is a standard
product of two Gaussians and it becomes:

%(“f;;vf

i R T v~ B SO
2mS?%
B

We plug it in and get that the quantity to be optimized is:

n ol 1 (! =)
a — Blog(v2ro)—5§1og5+5§T+ﬁlog\/%+5logsg—55
B
(7)
f_ v\
:a—ﬁélogﬁw%%+ﬁlogsﬁ—ﬂ<é+loga“> (8)
B
v 1 f_ v 2

:a—mog(@; >+65%—65 (9)

o VB L =)

=a — f[log (\/(02)2+5(0v)2) +ﬁ2 52 Bo (10)

o (o2 L (=)

=a+ éﬁlog (1 + B(O’v)2> —f—ﬁé (O'f)2 +/B(UU)2 —6(5 (11)
(12)

(TODO: simplify that ridiculous mess). The questions is if we can help
ourselves a bit in the optimization task by somehow showing this function
has a single optimum or similar — I am not sure that is possible, but you
never know. A step towards this is to differentiate it. vlg., lets assume it has

2

the form:

A
F(m)—xlog(1+;)+%+1—3x (13)

= xlog h(z) + % — Bz (14)
h(z) =1+ 2

15
We differentiate to get:

W) hw) B 1o
::bgmxy+zég[h@ﬁ;;A}—la (17)
I;((j)) 1;A - éx_—:\)\ (18)
So therefore
F'(x) = log h(z) - B — i N {xhgg A} (19)
zlogh(x)_B_xiA{xZi;A] (20)
So we can now start to bound this. We get that
RISPRP YE R

Solving for F”(x) < 0 can be done by reducing this to a 3rd degree polynomial

and solve for the smallest root. Less exactly, we can also just ignore higher-
order terms in x and solve to get:

A A

A
0<=—-B- 22
<2 x+)\+(x+)\)x (22)
1

5 (23)

This can be simplified obviously (TODQO). The lower bound can be obtained
by simply dropping terms to get:

F'(z) >logh(z) — B —1 (24)
v < (25)

(TODO: Much better lower bound can be obtained by back-substituting
upper and lower bounds into expression for F’ and solve again for lower
bound. This will give explicit A-dependency.

This gets us an interval for within which to search for a root using the
bisection method:

A 1 A
- . 2 2 A) = = 2
TE | Fm 2B\/(AB) +4B(\2 4+ \A) : (26)

2 Generalization:

Suppose the dynamics of the model is given by:

Tr1 = f(@k, ag, Ley,) (27)
Wy, ~ PW(') (28)

Where L is a linear operator (let’s see). We then define the state as:

Tk
_ | Tk-1
S = Gt (29)
Lek

This definition contains redundant information. The update rule is then

f (g, ag, Ley)

See1 = f(Sk, ap, Lep) = z: (30)
Ley,
Then the hard part of the update rule is:
b [o

Where py is the dynamics of the (unperturbed) version of the system. To
compute the expectation, we will assume a special form of the value function
namely:

N 1
V(spr1) = V(spy1) = V(l)(:z:k, ai) + 1742 (2, a) "wy, + iw,;r\/@ (g, ag)wy,
(32)

We will also assume the transition dynamics takes the form:

1
P Do o(ss,a) = VO (g, ap) + VO (g, ap) Twg + §w,IV(3)(xk, ag)Wy

Then the transition function is assumed to be:
_ 1
Tpy1 = f($k7 ay, Wi) = f(l)(mk, Gk) + f@) (xk, Clk>ka + §w,;rf(3)(xk, ak)wk
(35)

The expectation can then still be computed exactly, and the coefficients above
can be learned using regression (even local linear?).

3 Question: Can we use an embedding?

Assume a new generative model of the form:

Tht1 = f(h(:L‘k, CLk) + wk) (36)

Where h is an embedding and wy, is assumed to be N'(0,1). Let g = f~! so
that

g(xra1) = h(xy, ar) + wy. (37)
Then it holds that
P(Tpg1|@n, a)dzrir = N(wp = g(@p41) — M@k, ar); 0,)| Jy(2ps1) |dwy, (38)

We also assume that z,_1, ai_1 and wy_; are part of the state sp. There-
fore we can introduce the approximation (assuming W is a second degree
polynomial):

Vi(skrn) = Vispir) = V(@ ar, W) = Whiap.ap) (Wi; ©). (39)

5

3.0.1 Defining objectives

When learning the objectives, we train () by minimizing the specific objective
given in the paper (viz., using the simulator) as:

Q(s,a) = ... (40)

So you could just as well train V' directly and use the simulator to define Q...
but this way is more elegant (or is it?). Robust learning requires V' internally
(to get 2nd degree polyal). Or does it?

The @Q-learning objective satisfy the Bellman equation

Q(sk,ar) = inf {r(sk, ag) + 7y max Q(Skt1, b)} (41)

KL(p|po)<é

Re-writing this, and assuming for simplicity reward only depends on state/action,
we get that for any constant C:

maxy QP (s, 1 1,b)
QrOb(Sk7ak) = r(sp, ax) + 21118 {—5 log & [e—I)BH} n 55} (42)
>

VrOb(sk 1)-C
—r(sk,ak)+0+sup{—ﬂlogE [e_ 5 } +(55} (43)
B>0

Vb (sp,) = max Q™ (1, b) (44)

for any constant C' (probably a bad idea to have such a constant). Then to
proceed, we need to find a way to compute the above expectation exactly
and update. Let’s say we divide this into two parts. The first computes
this expectation (and updates). The second considers how to fit V™P. For
each V™ we can compute the target easily. Then perform the update as a
regression problem (batched) which is trained jointly with o. IOW, we get
that:

Vob(sy) = max Q™" (1, b) (45)
~ V™ (s,) (46)
= Co(h(@p-1, ar-1)) + Cr(A(zk-1, ak—1))wi + %w;@(h(ﬂ@k—b a—1))W
(47)
wy, = g(ak) = h(@p-1, ax-1) (48)

Train this using gradient descent.

What happens if you use the @-learning function and try to integrate?
Let each coordinate be a 2nd degree polynomial.

V' to minimize the recursion:

is a second-order approximation of V' only depending on the latent state
h(zy, ar). We can learn the latent embedding by minimizing a loss over both
V and over g (issue: g most well-defined. Possibly fix h insofar as second-
order approx is concerned and use that € automatically normal? Alternatively
use that V' must satisfy, before optimization, that:

V(sks1) = max ayE [r(zy, ar) + V(zps1)] (49)
Then it holds that

Jo(Tp41) (50)

that hy = h(xy, ag, wy) is a latent embedding of some sort and the next
state is given by:

Tpt+1 = O(hk) (51)

Given embedding, we can write the value function as a quadratic in embed-
ding parameter?
In other word the expectation is with respect to

0 (52)
However, we can re-write this to be:

p(s'ls, a)
We will then assume a special parametrization of the value function in the
form that:
V(s') = VW(s) + VO (s)Le + (Le) "V (s)(Le) (53)

There are some questions about whether this is a rigorous construction or
not. The three matrices need to be learned using a neural network; this is
done by simply regressing

References

[LBB*22] Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu,
Zhengqing Zhou, and Zhengyuan Zhou. Distributionally robust
g-learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceed-
ings of the 39th International Conference on Machine Learning,

volume 162 of Proceedings of Machine Learning Research, pages
13623-13643. PMLR, 17-23 Jul 2022.

	Introduction
	Bellman operator

	Generalization:
	Question: Can we use an embedding?
	Defining objectives

