arXiv:2003.06281v4 [stat.ML] 1 Dec 2020

BAYESFLOW: LEARNING COMPLEX STOCHASTIC MODELS WITH
INVERTIBLE NEURAL NETWORKS

A PREPRINT
Stefan T. Radev Ulf K. Mertens
Institute of Psychology Institute of Psychology
Heidelberg University Heidelberg University
Hauptstr. 47-51, 69117 Heidelberg Hauptstr. 47-51, 69117 Heidelberg
stefan.radev93@gmail.com mertens.ulf@gmail.com
Andreas Voss Lynton Ardizzone
Institute of Psychology Visual Learning Lab, IWR
Heidelberg University Heidelberg University
Hauptstr. 47-51, 69117 Heidelberg Im Neuenheimer Feld 205, 69120 Heidelberg
andreas.voss@psychologie.uni-heidelberg.de lynton.ardizzone@iwr.uni-heidelberg.de
Ullrich Koéthe
Visual Learning Lab, IWR
Heidelberg University

Im Neuenheimer Feld 205, 69120 Heidelberg
ullrich.koethe@iwr.uni-heidelberg.de

December 3, 2020

ABSTRACT

Estimating the parameters of mathematical models is a common problem in almost all branches of
science. However, this problem can prove notably difficult when processes and model descriptions
become increasingly complex and an explicit likelihood function is not available. With this work,
we propose a novel method for globally amortized Bayesian inference based on invertible neural
networks which we call BayesFlow. The method uses simulation to learn a global estimator for
the probabilistic mapping from observed data to underlying model parameters. A neural network
pre-trained in this way can then, without additional training or optimization, infer full posteriors on
arbitrary many real datasets involving the same model family. In addition, our method incorporates a
summary network trained to embed the observed data into maximally informative summary statistics.
Learning summary statistics from data makes the method applicable to modeling scenarios where
standard inference techniques with hand-crafted summary statistics fail. We demonstrate the utility
of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive
science and ecology. We argue that BayesFlow provides a general framework for building amortized
Bayesian parameter estimation machines for any forward model from which data can be simulated.

1 Introduction

The goal of Bayesian analysis is to infer the underlying characteristics of some natural process of interest given
observable manifestations . In a Bayesian setting, we assume that we already posses sufficient understanding of the
forward problem, that is, a suitable model of the mechanism that generates observations from a given configuration
of the hidden parameters 8. This forward model can be provided in two forms: In likelihood-based approaches, the
likelihood function p(x | 0) is explicitly known and can be evaluated analytically or numerically for any pair (z, 8). In
contrast, likelihood-free approaches only require the ability to sample from the likelihood. The latter approaches are



A PREPRINT - DECEMBER 3, 2020

typically realized by simulation programs, which generate synthetic observations by means of a deterministic function
g of parameters @ and independent noise (i.e., random numbers) &:

x;, ~px]|0) — x=g(0§;) with§; ~ p(§) (D

In such cases, the likelihood p(x | €) is only defined implicitly via the action of the simulation program g, but calculation
of its actual numerical value for a simulated observation x; is impossible. This, in turn, prohibits standard statistical
inference.

Likelihood-free problems arise, for example, when p(x | €) is not available in closed-form, or when the forward model
is defined by a stochastic differential equation, a Monte-Carlo simulation, or a complicated algorithm [27, 149} 47, |51].
In this paper, we propose a new Bayesian solution to the likelihood-free setting in terms of invertible neural networks.

Bayesian modeling leverages the available knowledge about the forward model to get the best possible estimate of the
posterior distribution of the inverse model:

__ p(x1n[6)p(6)
p(0|x1n) = fp(xlzji,v\e)p(e) a6 :

In Bayesian inference, the posterior encodes all information about 8 obtainable from a set of observations 1.y =
{af;l}f\il The observations are assumed to arise from N runs of the forward model with fixed, but unknown, true
parameters 0. Bayesian inverse modeling is challenging for three reasons:

1. The right-hand side of Bayes’ formula above is always intractable in the likelihood-free case and must be
approximated.

2. The forward model is usually non-deterministic, so that there is intrinsic uncertainty about the true value of 6.

3. The forward model is typically not information-preserving, so that there is ambiguity among possible values
of 6.

The standard solution to these problems is offered by approximate Bayesian computation (ABC) methods [451[10,39}/47].
ABC methods approximate the posterior by repeatedly sampling parameters from a proposal (prior) distribution

6" ~ p(6) and then simulating multiple datasets by running the forward model ; ~ p(x | ") for i = 1...N. If the

resulting dataset is sufficiently similar to the actually observed dataset x{. ;, the corresponding 0" is retained as a
sample from the desired posterior, otherwise rejected. Stricter similarity criteria lead to more accurate approximations
of the desired posterior at the price of higher and oftentimes prohibitive rejection rates.

More efficient methods for approximate inference, such as sequential Monte Carlo (ABC-SMC), Markov-Chain Monte
Carlo variants [44], or the recent neural density estimation methods [16} 38} 30], optimize sampling from a proposal
distribution in order to balance the speed-accuracy trade-off of vanilla ABC methods. More details can be found in the
section Related Work and in the excellent review by [9].

All sampling methods described above operate on the level of individual datasets, that is, for each observation sequence
T1.N, the entire estimation procedure for the posterior must be run again from scratch. Therefore, we refer to this
approach as case-based inference. Running estimation for each individual dataset separately stands in contrast to
amortized inference, where estimation is split into a potentially expensive upfront training phase, followed by a much
cheaper inference phase. The goal of the upfront training phase is to learn an approximate posterior p(@ | x;.x) that
works well for any observation sequence x1.y. Evaluating this model for specific observations 9. is then very
fast, so that the training effort amortizes over repeated evaluations (see for a graphical illustration). The
break-even between case-based and amortized inference depends on the application and model types, and we will report
comparisons in the experimental section. Our main aim in this paper, however, is the introduction of a general approach
to amortized Bayesian inference and the demonstration of its excellent accuracy in posterior estimation for a variety of
popular forward models.

To make amortized inference feasible in practice, it must work well for arbitrary dataset sizes IN. Depending on
data acquisition circumstances, the number of available observations for a fixed model parameter setting may vary
considerably, ranging from N = 1 to several hundreds and beyond. This has not only consequences for the required
architecture of our density approximators, but also for their behavior: They must exhibit correct posterior contraction.
Accordingly, the estimated posterior p(0 | 1.y ) should get sharper (i.e., more peaked) as the number N of available
observations increases. In the simplest case, the posterior variance should decrease at rate 1/N, but more complex
behavior can occur for difficult (e.g., multi-modal) true posteriors p(8 | z1.n ).



A PREPRINT - DECEMBER 3, 2020

T ooooooooooooooooooooooooos Training phase Inference phase

Prior / Proposal Y
Collect H

dat: H

2/ Research \ !

domain !

H

1

H

1

1

H
H |
H 1
H 1
Collect ' '
Simulated | *:¥( summary | *Tn(" Observed data /' Research H i
data statistics data domain 1 H
H |
7|z : )
- H
H
1 1
H
H

Simulate

dam

o
XN

Summary
network

7

Density
estimator

Approximate
posterior

Inference

|
'

'

'

H

H Posterior

'

| | Pl 5
Y K Tra]ninglooy , ," \\ ------------------------------- f/l—/,' \\.---_""""““"_“i\/l—’//
\\\ __________________________________________________________________ IE’ . K Training Iocﬂ
(a) Case-based inference (b) Globally amortized inference with BayesFlow

Figure 1: Graphical illustration of the main differences between case-based (neural) density estimation methods and
BayesFlow. (a) Case-based methods require a separate optimization loop for each observed dataset from a given
research domain. When case-based methods incorporate a training phase (e.g., APT), it must be repeated for each new
dataset. Summary statistics are manually selected and may thus be sub-optimal; (b) BayesFlow incorporates a global
upfront training (before any real data are collected) via simulations from the forward model (left panel). Summary and
inference network are trained jointly, resulting in higher accuracy than hand-crafted summary statistics. In the inference
phase (right panel), BayesFlow works entirely in a feed-forward manner, that is, no training or optimization happens in
this phase. The upfront training effort is therefore amortized over arbitrary many observed datasets from a research
domain working on the same model family. Note that the solid and dashed plates are swapped between case-based
Bayesian inference and the training phase of BayesFlow.

We incorporate these considerations into our method by integrating two separate deep neural networks modules (detailed
in the Methods section; see also Figure [I)), which are trained jointly on simulated data from the forward model: a
summary network and an inference network.

The summary network is responsible for reducing a set of observations x;. of variable size to a fixed-size vector of
learned summary statistics. In traditional likelihood-free approaches, the method designer is responsible for selecting
suitable statistics for each application a priori [33} 132} /43| 45]]. In contrast, our summary networks learn the most
informative statistics directly from data, and we will show experimentally (see Experiment 3.8) that these statistics are
superior to manually constructed ones. Summary networks differ from standard feed-forward networks because they
should be independent of the input size [V and respect the inherent functional and probabilistic symmetries of the data.
For example, permutation invariant networks are required for i.i.d. observations [6], and recurrent networks [15] or
convolutional networks [29]] for data with temporal or spatial dependencies.

The inference network is responsible for learning the true posterior of model parameters given the summary statistics of
the observed data. Since it sees the data only through the lens of the summary network, all symmetries captured by the
latter are automatically inherited by the posterior. We implement the inference network as an invertible neural network.
Invertible neural networks are based on the recent theory and applications of normalizing flows [3\ 25} [18} [13} [26].
Flow-based methods can perform exact inference under perfect convergence and scale favourably from simple low-
dimensional problems to high-dimensional distributions with complex dependencies, for instance, the pixels of an
image [25]]. For each application/model of interest, we train an invertible network jointly with a corresponding summary
network using simulated data from the respective known forward model with reasonable priors. After convergence of
this forward training, the network’s invertibility ensures that a model for the inverse model is obtained for free, simply
by running inference through the model backwards. Thus, our networks can perform fast amortized Bayesian inference
on arbitrary many datasets from a given application domain without expensive case-based optimization. We call our
method BayesFlow, as it combines ideas from Bayesian inference and flow-based deep learning.

BayesFlow draws on major advances in modern deep probabilistic modeling, also referred to as deep generative
modeling [6, 25| 2| [24]]. A hallmark idea in deep probabilistic modeling is to represent a complicated target distribution
as a non-linear bijective transformation of some simpler latent distribution (e.g., Gaussian or uniform), a so called
pushforward. Density estimation of the target distribution, a very complex problem, is thus reduced to learning
a non-linear transformation, a task that is ideally suited for gradient-based neural network training via standard
backpropagation. During the inference phase, samples from the target distribution are obtained by sampling from the
simpler latent distribution and applying the inverse transformation learned during the training phase (see [Figure Tb|



A PREPRINT - DECEMBER 3, 2020

for a high-level overview). Using this approach, recent applications of deep probabilistic models have achieved
unprecedented performance on hitherto intractable high-dimensional problems [6} 25, [18]].

In the context of Bayesian inference, the target distribution is the posterior p(@ | x1.n) of model parameters given
observed data. We leverage the fact that we can simulate arbitrarily large amounts of training data from the forward
model in order to ensure that the summary and invertible networks approximate the true posterior as well as possible.
During the inference phase, our model can either numerically evaluate the posterior probability of any candidate

parameter 6, or can generate a posterior sample 0(1), 0(2), e 0F) of likely parameters for the observed data x9, 5. In
the Methods section, we show that our networks indeed sample from the correct posterior under perfect convergence.
In summary, the contributions of our BayesFlow method are the following:

* Globally amortized approximate Bayesian inference with invertible neural networks;

* Learning maximally informative summary statistics from raw datasets with variable number of observations
instead of relying on restrictive hand-crafted summary statistics;

* Theoretical guarantee for sampling from the true posterior distribution with arbitrary priors and posteriors;

¢ Parallel computations applicable to both forward simulations and neural network optimization;

To illustrate the utility of BayesFlow, we first apply it to two toy models with analytically tractable posteriors. The first
is a multivariate Gaussian with a full covariance matrix and a unimodal posterior. The second is a Gaussian mixture
model with a multimodal posterior. Then, we present applications to challenging models with intractable likelihoods
from population dynamics, cognitive science, epidemiology, and ecology and demonstrate the utility of BayesFlow
in terms of speed, accuracy of recovery, and probabilistic calibration. Alongside, we introduce several performance
validation tools.

1.1 Related Work

BayesFlow incorporates ideas from previous machine learning and deep learning approaches to likelihood-free inference
[31,1411133] 143} 22]. The most common approach has been to cast the problem of parameter estimation as a supervised

learning task. In this setting, a large dataset of the form D = {(h(wgn}\;), 6"™)}M__ s created by repeatedly sampling
from p(60) and simulating an artificial datasets 1.y by running the simulator with the sampled parameters. Usually,
the dimensionality of the simulated data is reduced by computing summary statistics with a fixed summary function
h(x1.n). Then, a supervised learning algorithm (e.g., random forest [43]], or a neural network [41]) is trained on the
summary statistics of the simulated data to output an estimate of the true data generating parameters. Thus, an attempt
is made to approximate the intractable inverse model @ = g~—*(x, &). A main shortcoming of supervised approaches is
that they provide only limited information about the posterior (e.g., point-estimates, quantiles or variance estimates) or
impose overly restrictive distributional assumptions on the shape of the posterior (e.g., Gaussian).

Our ideas are also closely related to the concept of optimal transport maps and its application in Bayesian inference
[12, 140, 18, IS]]. A transport map defines a transformation between (probability) measures which can be constructed
in a way to warp a simple probability distribution into a more complex one. In the context of Bayesian inference,
transport maps have been applied to accelerate MCMC sampling [40], to perform sequential inference [12]], and to solve
inference problems via direct optimization [5]. In fact, BayesFlow can be viewed as a parameterization of invertible
transport maps via invertible neural networks. An important distinction is that BayesFlow does not require an explicit
likelihood function for approximating the target posteriors and is capable of amortized inference.

Similar ideas for likelihood-free inference are incorporated in the recent automatic posterior transformation (APT)
[L6], and the sequential neural likelihood (SNL) [38]] methods. APT iteratively refines a proposal distribution via
masked autoregressive flow (MAF) networks to generate parameter samples which closely match a particular observed
dataset. SNL, in turn, trains a masked autoencoder density estimator (MADE) neural network within an MCMC loop to
speed-up convergence to the true posterior. Even though these methods also entail a relatively expensive learning phase
and a cheap inference phase, posterior inference is amortized only for a single dataset. Thus, the learning phase needs
to be run through for each individual dataset (see [Figure Ta)). In contrast, we propose to learn the posterior globally
over the entire range of plausible parameters and datasets by employing a conditional invertible neural network (cINN)
estimator (see [Figure Tb). Previously, INNs have been successfully employed to model data from astrophysics and
medicine [2]. We adapt the model to suit the task of parameter estimation in the context of mathematical modeling
and develop a probabilistic architecture for performing fully Bayesian and globally amortized inference with complex
mathematical models.



A PREPRINT - DECEMBER 3, 2020

2 Methods

2.1 Notation

In the following, the number of parameters of a mathematical model will be denoted as D, and the number of
observations in a dataset as N. We denote data simulated from the mathematical model of interest as x1.x =
(x1, T2, ..., xN ), where each individual a; can represent a scalar or a vector. Observed or test data will be marked with
a superscript o (i.e., {, ). The parameters of a mathematical model are represented as a vector @ = (61,02, ...,0p),
and all trainable parameters of the invertible and summary neural networks as ¢ and ), respectively. When a dataset
consists of observations over a period of time, the number of observations will be denotes as 7T'.

2.2 Learning the Posterior

Assume that we have an invertible function f : RP — R, parameterized by a vector of parameters ¢, for which the
inverse f ‘; L. RP — RP exists. For now, consider the case when raw simulated data x1.y of size N = 1 is entered

directly into the invertible network without using a summary network. Our goal is to train an invertible neural network
which approximates the true posterior as accurately as possible:

py(0]z) ~ p(0|x) 3)

for all possible @ and x. We reparameterize the approximate posterior pg in terms of a conditional invertible neural
network (cINN) f4 which implements a normalizing flow between 8 and a Gaussian latent variable z:

0~p¢,(0|w)<:>0:f(;l(z;a:)wichNND(zm,H) 4)

Accordingly, we need to ensure that the outputs of f(;l (z; x) follow the target posterior p(@ | ). Thus, we seek neural

network parameters (,ZAS which minimize the Kullback-Leibler (KL) divergence between the true and the model-induced
posterior for all possible datasets @. Therefore, our objective becomes:

~

¢ = arg;nin Ep(e) [KL(p(6 | ) || pp(6 | )] ©)
= al“génin Epe) [Epo|2) [logp(8 | 2) —logpg (0 | )]] (6)
= argmax By () [Epe =) llogpe (0| )] @
= argmax [[ @.0)10800(6]2) e ®)

Note, that the log posterior density p(6 | ) can be dropped from the optimization objective in Eq as it does not

depend on the neural network parameters ¢. In other words, we seek neural network parameters ¢ which maximize the
posterior probability of data-generating parameters 8 given observed data x for all @ and @. Since f4(0;x) = z by
design, the change of variable rule of probability yields:

o0 ]2) = iz = fo(6: ) [aer (21T ©

Thus, we can re-write our objective as:
& = argmax [[ @.0)102p5(6| 2t (10)
= argglax//p(m, 6)(log p(fe(0;x)) + log|det J 5, | ) ddf (11)

where we have abbreviated 0 f(0; x)/06 (the Jacobian of fg evaluated at @ and ) as J f,,. Due to the architecture of
our cINN, the log ‘det Jis ] is easy to compute (see next section for details).

Utilizing simulations from the forward model (Eq[T)), we can approximate the expectations by minimizing the Monte-
Carlo estimate of the negative of Eq[TT] Accordingly, for a batch of M simulated datasets and data-generating



A PREPRINT - DECEMBER 3, 2020

parameters {(z(™, ™)} M_ we have:

M
~ 1
_ s _ (m) | pp(m)
= arg;)nln i z:: log py (0~ | 2'™) (12)
M
= argml M Z (—logp fo(0™); 2(™)) —log ‘det J;:':) ) (13)
m=1
[sot0s2],
- ~ log det J7"| 14
arg;nlanZ:l 5 og |de (14)

We treat Eq as a loss function £(¢) which can be minimized with any stochastic gradient descent method. The
first term follows from Eq[T3]due to the fact that we have prescribed a unit Gaussian distribution to z. It represents

the negative log of Np (2 | 0,1) o exp(||— zH ). The second term controls the rate of volume change induced by the
learned non-linear transformatlon from 6 to z achleved by fs. Thus, minimizing Eqﬂ ensures that z follows the
prescribed unit Gaussian.

The correctness of the learned posterior can be guaranteed in the following way, assuming the network is able to reach
the global minimum of the loss (i.e. under perfect convergence).

Proposition 1. Assume that the cINN architecture and domain of ¢ are chosen such that qAﬁ is the global minimum of
the objective in Eq[I1} Then, the latent output distribution will be statistically independent of the conditioning data,
D J)(z | ) L p(x). As a result, the samples transformed backwards from p(z) will follow the true posterior, that is:

f(gl(z;:c) ~p@|x) with z~Np(z|0,T) (15)

Proof. For short, we denote p(z) := Np(z|0,1), and the distribution of network outputs as p(f5(0;x)) =pg(z | @).
Due to KL(+||-) > 0 (Gibbs’ inequality), the global minimum of the objective is achieved exactly when the argument
in Eq[5] becomes 0. To relate this to the sampling process, we note the invariance of KIL under diffeomorphic
transformations, from which it follows that

KL (pg(z | 2) | p(2)) =0. (16)

Considering p(z) L p(z) and pg(z | ) = p(z) (from Eq, this also implies pz(z|«) L p(x), which means the
latent output distribution is the same for any fixed = we choose. This motivates the validity of taking samples from p(z)
and transforming them back using the condition, to generate samples from the posterior. By definition of the model, the
generated samples fq{l (z,2) with z ~ p(z) follow p;(6 | ). The proposition therefore holds when the argument in

Eq[)is zero. O

We now generalize our formulation to datasets with arbitrary numbers of observations. If we let the number of
observations N vary and train a summary network & = h.(21.n) together with the cINN, our main objective changes
to:

q?), 1Ab = aririapr(myg’N) [logpe (0 | hey(x1:n))] (17

and its Monte Carlo estimate to:

a6y @)
2

o~ 1
b, = argmin — Z

g _log ‘det ( m>)‘ (18)

m=1

In order to make the estimation of p(0 | ;. ) tractable, we assume that there exists a vector 1 of sufficient statistics
that captures all information about 8 contained in 1. in a fixed-size (vector) representation. For /. (z1.n)tobea
useful estimator for 77, both should convey the same information about 8, as measured by the mutual information:

MI(0, hy(x1.n)) = MI1(0,7) (19)

Since we do not know 77, we can enforce this requirement only indirectly by minimizing the Monte Carlo estimate of
Eq[T7] The following proposition states that, under perfect convergence, samples from a cINN still follow the true
posterior given the outputs of a summary networks.



A PREPRINT - DECEMBER 3, 2020

Proposition 2. Assume that we have a perfectly converged cINN fg and a perfectly converged summary network
hqy. Assume also, that there exists a vector m of sufficient summary statistics for x1.n. Then, independently sampling

z ~ p(z) and applying f;l (2; hap(x1.8)) to each z yields independent samples from p(0 | 1. ).

Proof. Perfect convergence of the networks under Eq[17]implies KL(p(0 | 21.n) || g (6 | hap(21:3))) = 0. This, in
turn, implies that M1(0, hy(x1.5)) = MI(6,n), because a perfect match of the densities would be impossible if
hay (1. ) contained less information about 6 than 7). Therefore, the proof reduces to that of Proposition 1. Note, that
whenever the KL divergence is driven to a minimum, A, (1.n5) i8 a maximally informative statistic [11]]. O

In summary, the approximate posteriors obtained by the BayesFlow method are correct if the summary and invertible
networks are perfectly converged. In practice, however, perfect convergence is unrealistic and there are three sources of
error which can lead to incorrect posteriors. The first is the Monte Carlo error introduced by using simulations from
9(0, &) to approximate the expectation in Eq The second is due to a summary network which may not fully capture
the relevant information in the data or when sufficient summary statistics do not exist. The third is due to an invertible
network which does not accurately transform the true posterior into the prescribed Gaussian latent space. Even though
we can mitigate the Monte Carlo error by running the simulator g(6, &) more often, the latter two can be harder to detect
and alleviate in a principled way. Nevertheless, recent work on probabilistic symmetry [6] and algorithmic alignment
[52] can provide some guidelines on how to choose the right summary network for a particular problem. Additionally,
the depth as well as the building blocks (to be explained shortly) of the invertible chain can be tuned to increase the
expressiveness of the learned transformation from @-space to z-space. The benefits of neural network depth have been
confirmed both in theory and practice [28 4], so we expect better performance in complex settings with increasing
network depth.

2.3 Composing Invertible Networks

The basic building block of our cINN is the affine coupling block (ACB) [13]. Each ACB consists of four separate fully
connected neural networks denoted as s1 (), s2(+), t1(-), t2(-). An ACB performs an invertible non-linear transformation,
which means that in addition to a parametric mapping f : R” — RP it also learns the inverse mapping f, ® L.RP —
RP for free. Denoting the input vector of fy as u and the output vector as v, it follows that f4(u) = v and f¢:1 (v) = u.
Invertibility is achieved by splitting the input vector into two parts u = (w1, u2) With u; = uy.p /o and uz = up/a41.p
(where D /2 is understood as a floor division) and performing the following operations on the split input:

V1 = U ® exp(sl(ug)) + tl(u2) (20)
Vo = U2 ® exp(sz(vl)) =+ tg(’l]l) (21)

where @ denotes element-wise multiplication. The outputs v = (v1, v3) are then concatenated again and passed to the
next ACB. The inverse operation is given by:

ug = (v2 — t2(v1)) © exp(—s2(v1)) (22)
uy = (v1 — t1(uz)) © exp(—s1(u2)) (23)

This formulation ensures that the Jacobian of the affine transformation is a strictly upper or a lower triangular matrix
and therefore its determinant is very cheap to compute. Furthermore, the internal functions s1(+), s2(+), ¢1(), t2(-) can
be represented by arbitrarily complex neural networks, which themselves need not be invertible, since they are only ever
evaluated in the forward direction during both the forward and the inverse pass through the ACBs. In our applications,
we parameterize the internal functions as fully connected neural networks with exponential linear units (ELU).

In order to ensure that the neural network architecture is expressive enough to represent complex distributions, we chain
multiple ACBs, so that the output of each ACB becomes the input to the next one. In this way, the whole chain remains
invertible from the first input to the last output and can be viewed as a single function parameterized by trainable
parameters ¢.

In our applications, the input to the first ACB is the parameter vector €, and the output of the final ACB is a d-
dimensional vector z representing the non-linear transformation of the parameters. As described in the previous section,
we ensure that z follows a unit Gaussian distribution via optimization, that is, p(z) = Np(z|0,I). Fixed permutation
matrices are used before each ACB to ensure that each axis of the transformed parameter space z encodes information
from all components of 6.

In order to account for the observed data, we feed the learned summary vectors into all internal networks of each ACB
(explained shortly). Intuitively, in this way we realize the following process: the forward pass maps data-generating



A PREPRINT - DECEMBER 3, 2020

parameters 6 to z-space using conditional information from the data x;., while the inverse pass maps data points
from z-space to the data-generating parameters of interest using the same conditional information.

2.4 Summary Network

Since the number of observations usually varies in practical scenarios (e.g., different number of measurements or time
points) and since datasets might exhibit various redundancies, the cINN can profit from some form of dimensionality
reduction. As previously mentioned, we want to avoid information loss through restrictive hand-crafted summary
statistics and, instead, learn the most informative summary statistics directly from data. Therefore, instead of feeding
the raw simulated or observed data to each ACB, we pass the data through an additional summary network to obtain a
fixed-sized vector of learned summary statistics & = hq (T1.n).

The architecture of the summary network should be aligned with the probabilistic symmetry of the observed data. An
obvious choice for time series-data is an LSTM-network [[15], since recurrent networks can naturally deal with long
sequences of variable size. Another choice might be a 1D fully convolutional network [29], which has already been
applied in the context of likelihood-free inference [41]. A different architecture is needed when dealing with i.i.d.
samples of variable size. Such data are often referred to as exchangeable, or permutation invariant, since changing
the order of individual elements does not change the associated likelihood or posterior. In other words, if Sy () is an
arbitrary permutation of N elements, the following should hold for the posterior:

p(0|x1.n) = p(0|Sn(T1.7)) (24)

Following [6], we encode probabilistic permutation invariance by implementing a permutation invariant function
through an equivariant non-linear transformation followed by a pooling operator (e.g., sum or mean) and another
non-linear transformation:

N
xr = h'tl’l (Z h¢2 (il:l)) (25)
i=1

where hy, and ., are two different fully connected neural networks. In practice, we stack multiple equivariant and
invariant functions into an invariant network in order to achieve higher expressiveness [6].

We optimize the parameters 1 of the summary network jointly with those of the cINN chain via backpropagation. Thus,
training remains completely end-to-end, and BayesFlow learns to generalize to datasets of different sizes by suitably
varying IV during training of a permutation invariant summary network or varying sequence length during training of a
recurrent/convolutional network.

To incorporate the observed or simulated data x;., each of the internal networks of each ACB is augmented to take
the learned summary vector & of the data as an additional input. The output of each ACB then becomes:

V1 = U ® exp(sl(u2, :i)) + tl(’UQ, 5)) (26)
vy = Ug © exp(sa(v1, &) + ta(vy, ) 27

Thus, a complete pass through the entire conditional invertible chain can be expressed as f4(0; &) = z together with
the inverse operation f Y(z; &) = 0. The inverse transformation during inference is depicted in

2.5 Putting It All Together

Algorithm ] describes the essential steps of the BayesFlow method using an arbitrary summary network and employing
an online learning approach.

The backpropagation algorithm works by computing the gradients of the loss function with respect to the parameters of
the neural networks and then adjusting the parameters, so as to drive the loss function to a minimum. We experienced
no instability or convergence issues during training with the loss function given by Eq[T8] Note, that steps 3-14 and
18-22 of Algorithm [T|can be executed in parallel with GPU support in order to dramatically accelerate convergence
and inference. Moreover, steps 18-22 can be applied in parallel to an arbitrary number of observed datasets after
convergence of the networks (see[Figure 2|for a full graphical illustration).

In what follows, we apply BayesFlow to two toy models with a unimodal and multimodal posteriors, respectively,
and then use it to perform Bayesian inference on challenging models from population dynamics, cognitive science,
epidemiology, and ecologyE] We deem these models suitable for an initial validation, since they differ widely in the

'Code and simulation scripts for all current applications are available at https://github. com/stefanradev93/cINN.


https://github.com/stefanradev93/cINN

A PREPRINT - DECEMBER 3, 2020

Algorithm 1 Amortized Bayesian inference with the BayesFlow method

1: Training phase (online learning with batch size M ):

2: repeat

3 Sample number of observations N ~ U(Nin, Nonaz)-
4 form=1,.... M do

5: Sample model parameters from prior: 8™ ~ p(6).
6: fori=1,...,N do

7 Sample a noise instance: &€, ~ p(&).

8

: Run the simulation (cf. Eq | to create a synthetic observation: mgm) = g(O(’")7 &)
9: end for

10: Pass the dataset z\"%) through the summary network: Z(™ = hy, (2z{™)).

Ti:N
11: Pass (0™ & (m)) through the inference network in forward direction: z(™ = f,(8™);
12: end for "

13: Compute loss according to Eq from the training batch {(G(m), zm, z(m) }mﬂ'

())

14: Update neural network paramefers ¢, 1) via backpropagation.
15: until convergence to ¢, 1
16:

17: Inference phase (given observed or test data x3, 5 ):
18: Pass the observed dataset through the summary network: z° = hﬂ,(w(f: N

19: for{=1,...,L do

20: Sample a latent variable instance: z(!) ~ Np(0,T).
21: Pass (z°, z()) through the inference network in inverse direction: ) = fa:l(z(l); z°).
22: end for

23: Return {6 }l , as a sample from p(0 | 29, )

Summary network

Sampling
— Z ~]\fd(0,1)

Apprommate posterior

Py (0]x = %°) Y
II|.
| .

Figure 2: Inference with pre-trained summary and inference networks. The posterior is approximated given real
observed data via independent samples from a learned pushforward distribution. Thus, knowledge about the mapping
between data and parameters (the inverse model) is compactly encoded within the weights of the two networks.




A PREPRINT - DECEMBER 3, 2020

generative mechanisms they implement and the observed data they aim to explain. Therefore, good performance on
these disparate examples underlines the broad empirical utility of the BayesFlow method. Details for models’ setup can
be found in Appendix C.

3 Experiments

3.1 Training the Networks

We train all invertible and summary networks described in this paper jointly via backpropagation. For all following
experiments, we use the Adam optimizer with a starter learning rate of 1072 and an exponential decay rate of .95.
We perform 50 000 to 100 000 iterations (i.e., mini-batch update steps) for each experiment, and report the results
obtained by the converged networks. Note, that we did not perform an extensive search for optimal values of network
hyperparameters, but use a default BayesFlow with 5 to 10 ACBs and a summary vector of size 128 for all examples in
this paper (see Appendix C for more details on summary network architectures). All networks were implemented in
Python using the TensorFlow library [1] and trained on a single-GPU machine equipped with NVIDIA® GTX1060
graphics card.

Regarding the data generation step, we take an approach which incorporates ideas from online learning [36] where

data are simulated by Eq on demand. Correspondingly, a dataset «1., or a batch of M datasets {:131 N}m 1,18
generated on the fly and then passed through the neural network. This training approach has the advantage that the
network never experiences the same input data twice. Moreover, training can continue as long as the network keeps
improving (i.e., the loss keeps decreasing), since overfitting in the classical sense is nearly impossible. However, if
simulations are computationally expensive and researchers need to experiment with different networks or training
hyperparameters, it might be beneficial to store and re-use simulations, since simulation and training in online learning
are tightly intertwined.

Once the networks have converged, we store the trained networks and use them to perform amortized inference on a
separate validation set of datasets. The pre-trained networks can also be shared among a research community so that
multiple researchers/labs can benefit from the amortization of inference.

3.2 Performance Validation

To evaluate the performance of BayesFlow in the following application examples, we consider a number of different
metrics:

* Normalized root mean squared error (NRMSE) - to asses accuracy of point-estimates in recovering ground-truth
parameter values;

» Coefficient of determination (R2) - to assess the proportion of variance in ground-truth parameters that is
captured by the point estimates;

* Re-simulation error (E7r7g;,,) - to assess the predictive mismatch between the true data distribution and the
data distribution generated with the estimated parameters (i.e., posterior predictive check);

e Calibration error (Err.q, [2]]) - to assess the coverage of the approximate posteriors (i.e., whether credibility
intervals are indeed credible);

 Simulation-based calibration (SBC, [46])) - to visually detect systematic biases in the approximate posteriors;

Details for computing all metrics are given in Appendix B.

3.3 Proof of Concept: Multivariate Normal Distribution

As a proof-of-concept, we apply the BayesFlow method to recover the posterior mean vector of a toy multivariate
normal (MVN) example. For a single D-dimensional MVN vector, the forward model is given by:

W~ N (] 0.1) ©8)
(™) ~ Np(z | p™, %) (29)

where in this illustrative case we assume a single D-dimensional sample per observation (/N = 1). If the covariance
matrix X is known, the posterior of the mean vector p has a closed-form which is also a MVN p(p|z,X) =
Na(p | m, A) with posterior precision matrix given by A~! =T+ 27! and posterior mean given by m = AX "'z

10



A PREPRINT - DECEMBER 3, 2020

Ground truth BayesFlow-1 BayesFlow-2

BayesFlow-5

Figure 3: Results on the GMM toy example with colors indicating cluster assignments. Approximation of the multimodal
posterior become closer to the ground truth distribution with increasing depth (number of ACBs) of the conditional
invertible network.

[7]. We can thus generate multiple batches of the form { (™), u(™)}M__ and pass them directly through an invertible

network. Since the ground-truth posterior is Gaussian, we can compute the KL divergence as a measure of mismatch
between the true and approximate posteriors in closed form.

We run three experiments with D € {5, 50, 500} where the size of the ACB blocks was doubled for each successive D.
To asses results, we compute the R and NRMSE between approximate and true means as well as the KL divergence
between approximate and true distributions on 100 test datasets. To compute the approximate covariance matrix, we
draw 5000 samples from the approximate posteriors for D = 5 and D = 50 and 50000 samples for D = 500.

The KL divergence for the 5-D and 50-D MVNs reached essentially 0 after 2-3 epochs of 1000 iterations indicating that
this is an easy problem for BayesFlow, and almost perfect recovery of the true posteriors is possible. The KL divergence
for the 500-D MVN model reached 0.37 after 50 epochs, which represents a negligible increase in entropy relative to
the true posterior (0.05% nats) and indicates decent approximation in light of the high dimensionality of the problem.

3.4 Multimodal Posterior - Gaussian Mixture Model

In order to test whether the BayesFlow method can recover multimodal posteriors, we apply it to a generative Gaussian
mixture model (GMM). Multimodal posteriors arise in practice, for example, when forward models are defined as
mixtures between different processes, or when models exhibit large multivariate trade-offs in their parameter space
(e.g., there are multiple separate regions of posterior density with plausible parameter values). Therefore, it is important
to show that our method is able to capture such behavior and does not suffer from mode collapse.

Following [2]], we construct a scenario in which the observed data x is a one-hot encoded vector representing one of the
hard labels red, green, blue, or yellow (i.e., a single observation, thus N = 1). The parameters @ = (61, 05) are the 2D

11



A PREPRINT - DECEMBER 3, 2020

coordinates E] of points drawn from a mixture of eight Gaussian clusters with centers distributed around the origin in a
clockwise manner and unit variance (see upper left). The first four clusters are assigned the label red, the
next two the label green, and the remaining two the labels blue and yellow. The posterior p(8 | ) is composed of the
clusters indexed by the corresponding label. We perform the experiment multiple times by increasing the depth of the
BayesFlow starting from 1 ACB block up to 5 ACB blocks. In this way, we can investigate the effects of cINN depth on
the quality of the approximate multimodal posteriors. We train each BayesFlow for 50 epochs and draw 8000 samples
from the approximate posteriors obtained by the trained models.

Results for all BayesFlows are depicted in We observe that approximations profit from having a deeper cINN
chain, with cluster separation becoming clearer when using more ACBs. This confirms that our method is capable of
recovering multimodal posteriors.

3.5 Stochastic Time-Series Model - The Ricker Model

In the following, we estimate the parameters of a well-known discrete stochastic population dynamics model [51]].
With this example, we are pursuing several goals: First, we want to demonstrate that the BayesFlow method is able to
accurately recover the parameters of an actual model with intractable likelihood by learning summary statistics from
raw data. Second, we show that BayesFlow can deal adequately with parameters that are completely unrelated to the
data by reducing estimates to the corresponding parameters’ prior. Third, we compare the global performance of the
BayesFlow method to that of related methods capable of amortized likelihood-free inference. Finally, we demonstrate
the desired posterior contraction and improvement in estimation with increasing number of observations.

Discrete population dynamics models describe how the number of individuals in a population changes over discrete
units of time [51]]. In particular, the Ricker model describes the number of individuals x; in generation ¢ as a function
of the expected number of individuals in the previous generation by the following non-linear equations:

x¢ ~ Pois(pNy) (30)
& ~N(0,0%) 31)
Nt+1 = T'NteiNngt (32)

fort =1, ..., T where N, is the expected number of individuals at time ¢, r is the growth rate, p is a scaling parameter
and ¢, is random Gaussian noise. The likelihood function for the Ricker model is not available in closed form, and
the model is known to exhibit chaotic behavior [33]. Thus, it is a suitable candidate for likelihood-free inference. The
parameter estimation task consists of recovering 8 = (p, r, o) from the observed one-dimensional time-series data x1.7
where each z; € N.

What if the data does not contain any information about a particular parameter? In this case, any good estimation
method should detect this, and return the prior of the particular parameter. To test this, we append a random uniform
variable u ~ U(0, 1) to the parameter vector @ and train BayesFlow with this additional dummy parameter. We expect
that the networks ignore this dummy parameter, that is, we assume that the estimated posterior of u resembles the
uniform prior.

We compare the performance of BayesFlow to the following recent methods capable of amortized likelihood-free
inference: conditional variational autoencoder (cVAE) [35]], cVAE with autoregressive flow (cVAE-IAF) [26], Deepln-
ference with heteroscedastic loss [41], approximate Bayesian computation with an LSTM neural network for learning
informative summary statistics (ABC-NN) [22] and quantile random forest (ABC-RF) [43]]. For training the models,
we simulate time-series from the Ricker model with varying lengths. The number of time points 7" is drawn from a
uniform distribution 7" ~ #/(100, 500) at each training iteration.

All neural network methods were trained for 100 epochs with 1000 iterations each on simulated data from the Ricker
model. The ABC-RF method was fitted on a reference table with 200 000 datasets, since the method does not allow
for online learning and increasing the reference table did not seem to improve performance. In order to avoid using
hand-crafted summary statistics for the ABC-RF method, we input summary vectors obtained by applying the summary
network trained jointly with the cINN. Thus, the ABC-RF method has the advantage of using maximally informative
statistics as input. We validate the performance of all methods on an independent test set of 500 datasets generated with
T = 500. We report performance metrics for each method and each parameter in

Parameters r and p seem to be well recoverable by all methods considered here. The o parameter turns out to be
harder to estimate, with BayesFlow and the ABC-NN method performing best. Further, BayesFlow performs very

“Note that this is not the typical GMM setup, as we construct the example such that the mixture assignments (labels) are observed
and the data coordinates are the latent parameters.

12



A PREPRINT - DECEMBER 3, 2020

r o P u 095

I y Amla N\ .
LN\ J N - ) \ N - ) Pz
40,00 50,00 60.00 70.00 040 060 1000 1050 1100 1150  0.00 050 1.00 e ossf
N N~ A\ 008 \\/_/\\
cVAE ¢ | T\ / \\\‘ oa0y /

\ / 004
Y \ / N\ y \ \—/—— 075 -
002
40.00 60.00 045 050 10.00 1050 11.00 11.50 060 070 0.80 —s

1\ { Nurnber of time points (7) Number of time points (T)
CVAE-IAF / N\ \ A [\
. N\ V21N AN J\ (b) Performance over all T's
50.00 60.00 0.40 0.50 10.50 11.00 0.50 0.60 0.70 0.80
r o P
A A AN \ . IR
DA N d /N o] MRMSE=0041 071 namse=0.07m NRMSE=0.018
/ \ / \ / \ / R?=0.980 061 R?=0019 12.5{ R?=0.996
A N ,/ D L N L N .
50.00 60.00 70.00 020 030 040 0.0 10.00 10.50 11.0 0.00 1.00 60 0.5 10.0
- 0.4
A rY 2 75
ABCNN /// \\ ’/ P A \\\ P | o\ 40 03
! ) \ / \ // 5.0
N\ Y N i N / \ 20 02 25
40.00 60.00 80.00 0.40 0.60 8.00 10.00 12.00 14.00 0.00 0.50 1.00 0.1

— Estimated mean —— True value Estimated posterior 0

0 20 40 60 80 0.2 0.4 0.6 0 5 10 15
Estimated

(a) Full posteriors from all methods for an example Ricker dataset.
(c) Parameter recovery (1" = 500)

r o Ie]
0.284
5.51
0.070 0.261
5.0
0.065 |
'91 0.24
D 4.5 0601
5 0.060 0.22
(o
2 i 0.055
g 40 0.20
< 0.0501
3.5 0.18
0.045
3.0 0.16 4
. . . . — 0.040 1, . ; . . . . . . .
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Number of time points (T) Number of time points (T) Number of time points (T)

(d) Posterior contraction with increasing 7'

Figure 4: Results on the Ricker model. (a) Approximate posteriors obtained by all implemented methods on a single
Ricker dataset. Note that only BayesFlow and ABC-NN are able to approximate the uniform posterior of u; (b) NRMSE
and R? performance metrics over all T's obtained by the BayesFlow method. We observe that parameter estimation
remains good over all T's, and becomes progressively better as more data is available (shaded regions indicate bootstrap
95% Cls); (c¢) Parameter recovery with BayesFlow for the maximum number of generations used during training
(T = 500); (d) Posterior contraction in terms of posterior standard deviation for each parameter across increasing
number of available generations (shaded regions indicate bootstrap 95% Cls).

well across all parameters and metrics. Importantly, the calibration error Err.,; obtained by BayesFlow is always low,
indicating that the shape of the approximate posterior closely matches that of the true posteriors. Variational methods
(cVAE, cVAE-IAF) experience some problems recovering the posterior of . The ABC-NN and ABC-RF methods
seem to recover point estimates with high accuracy but the approximate posteriors of the former exhibit relatively high
calibration error. The ABC-RF method can only estimate posterior quantiles, so no comparable calibration metric could
be computed.

Further results are depicted in[Figure 4] Inspecting the full posteriors obtained by all methods on an example test dataset,
we note that only BayesFlow and the ABC-NN methods are able to recover the uninformative posterior distribution
of the dummy noise variable u (Figure 4a). Moreover, the importance of a Bayesian treatment of the Ricker model
becomes clear when looking at the posteriors of . On most test datasets, the posterior density spreads over the entire
prior range (high posterior variance) indicating large uncertainty in the obtained estimates. Moreover, the shapes of the
marginal parameter posteriors vary widely across validation datasets, which highlights the importance of avoiding ad
hoc restrictions on allowed posterior shapes (see for examples). We also observe that parameter estimation
with BayesFlow becomes increasingly accurate when more time points are available (Figure 4b)). Parameter recovery
is especially good with the maximum number of time points (see [Figure 4c). Finally, (Figure 4d) reveals a notable
posterior contraction across increasing number of time points available to the summary network.

13



A PREPRINT - DECEMBER 3, 2020

Table 1: Performance results on the Ricker model across all estimation methods

BayesFlow cVAE cVAE-IAF DeepInference ABC-NN ABC-RF
Erreq r 0.017+0.007 0.014 +0.007 0.058 £0.017 0.122 £0.016 0.164 £0.015 -
o 0.013+0.007 0419+0.011 0382+0.013 0.184 £0.021 0.119+0.014 -
p 0.084 +0.018 0.121 £0.017 0.188 £0.018 0.111 £0.019 0.283 £0.012 -
NRMSE r 0.041 £0.002 0.047 £0.004 0.047 £0.006 0.052+0.003 0.053 +£0.003 0.044 £+ 0.004
o 0.077 £0.005 0.137 £0.004 0.124 £0.006 0.108 £0.004 0.077 £+ 0.004 0.081 £ 0.005
p 0.018+0.001 0.016 +0.002 0.019 £0.002 0.019 £0.002 0.033 £0.002 0.021 + 0.001
R? r 0.980 +0.003 0.973 £0.005 0.973 £0.007 0.968 £0.005 0.966 +0.004 0.977 &+ 0.004
o 0919+0.011 0.7454+0.020 0.792 £0.020 0.841 £0.014 0.919 +0.010 0.912+0.011
p 0.996+0.001 0.997 +£0.001 0.996 £ 0.001 0.996 £0.001 0.986 £ 0.002 0.994 + 0.001
Errgim - 0.038 +0.001 0.041 £0.001 0.042 £0.001 0.041 £0.001 0.048 £0.002 0.041 & 0.002

Note: For each parameter, bootstrapped means (£1 standard error) of different performance metrics are displayed for all tested
methods. For each metric and each parameter, the best performance across methods is printed in bold font.

3.6 A Model of Perceptual Decision Making - The Lévy-Flight Model

In the following, we estimate the parameters of a stochastic differential equation model of human decision making. We
perform the first Bayesian treatment of the recently proposed Lévy-Flight Model (LFM), as its intractability has so far
rendered traditional non-amortized Bayesian inference methods prohibitively slow [49]].

With this example, we first want to show empirically that BayesFlow is able to deal with i.7.d. datasets of variable
size arising from N independent runs of a complex stochastic simulator. For this, we inspect global performance of
BayesFlow over a wide range of dataset sizes. Additionally, we want to show the advantage of amortized inference
compared to case-based inference in terms of efficiency and recovery. For this, we apply BayesFlow along with four
other recent methods for likelihood-free inference to a single dataset and show that in some cases the speed advantage
of amortized inference becomes noticeable even after as few as 5 datasets. Crucially, researchers often fit the same
models to different datasets, so if a pre-trained model exists, it would present a huge advantage in terms of efficiency
and productivity.

We focus on the family of evidence accumulator models (EAMs) which describe human decision making by a set of
neurocognitively motivated parameters [42]]. EAMs are most often applied to choice reaction times (RT) data to obtain
an estimate of the underlying processes governing categorization and (perceptual) decision making. In its most general
formulation, the forward model of EAMs takes the form of a stochastic ordinary differential equation (ODE):

de = vdt + £Vdt (33)

where dx denotes a change in activation of an accumulator, v denotes the average speed of information accumulation
(often termed the drift rate), and £ represents a stochastic additive component, usually modeled as coming from a
Gaussian distribution centered around 0: & ~ N(0, ¢?).

EAMs are particularly amenable for likelihood-free inference, since the likelihood of most interesting members of
this model family turn out to be intractable [34]. This intractability has precluded many interesting applications and
empirically driven model refinements. Here, we apply BayesFlow to estimate the parameters of the recently proposed
Lévy-Flight Model (LFM) [49]]. The LFM assumes an «-stable noise distribution of the evidence accumulation process
which allows to model discontinuities in the decision process. However, the inclusion of a-stable noise (instead of the
typically assumed Gaussian noise) leads to a model with intractable likelihood:

dx = vdt + £dt/*
& ~ AlphaStable(a,0,1,0)

(34)
(35)

where a controls the probability of outliers in the noise distribution. The LFM has three additional parameters: the
threshold a determining the amount of evidence needed for the termination of a decision process; a relative starting point,
zr, determining the amount of starting evidence available to the accumulator before the actual decision alternatives are
presented; and an additive non-decision time ;.

During training of the networks, we simulate response times data from two experimental conditions with two different
drift rates, since such a design is often encountered in psychological research. The parameter estimation task is
thus to recover the parameters 8 = (v, vy, a,tg, 27, @) from two-dimensional i.i.d. RT data x1.ny where each
x; € R? represents RTs obtained in the two conditions. The number of trials is drawn from a uniform distribution

14



A PREPRINT - DECEMBER 3, 2020

1.5 1

Vi

1.0

0.5 -

-1.54

—2.0

V2

=25

—3.0 1

0.70 A
0.65
s
N 0.60
0.55 -
0.50

Method
—— SMC-MMD

2.00 —— BayesFlow

1.75 1
1.50 A
1.25 1
1.00 A

0.65

0.60 1

0.55

0.50 4

1.6

1.4 1

1.2 1

(a) Joint posteriors from BayesFlow and SMC-MMD

Vi V2 zr

3
BayesFlow \ 20 A
SMC-MMD
SNPE-A 24 15 4
SNPE-B
SNPE-C

10

1
1
1
51 1
1
1
]

I

1

1
‘ : i : : ; | 0 | . . .
06 08 10 12 14 -30 -25 -20  -15 050 055 060 065 070 0.75

404 ﬁ
201
=i

1.00 125 150 175 200 225 050 055 0.60  0.65

(b) Marginal posteriors from all methods

Figure 5: Comparison results on the LFM model. (a) Marginal and bivariate posteriors obtained by BayesFlow and
SMC-MMD on the single validation dataset. We observe markedly better sharpness in the BayesFlow posteriors; (b)
Marginal posteriors obtained from all methods under comparison.

15



A PREPRINT - DECEMBER 3, 2020

[ 50 100 150 200 250
Rank statistic

0 50 100 150 200 250 O 50 100 150 200 250

a to a

0.
200 400 600 800 1000 200 400 600 800 1000

Number of trials (N) Number of trials (N) [ 50 100 150 200 250 O 50 100 150 200 250 O 50 100 150 200 250

(2) Performance over all trial numbers N (b) Simulation-based calibration (SBC) at N = 1000

Figure 6: BayesFlow results obtained on the LFM model.

Table 2: Speed of inference and break-even for amortized inference for the LFM model

Upfront Training Inference (1 dataset) Inference (500 datasets) Break-even after

BayesFlow  23.2h 60 ms 3.7s -
SMC-MMD - 55h 2700 h 5 datasets
SNPE-A - 0.65h 325h 37 datasets
SNPE-B - 0.65h 325h 37 datasets
SNPE-C - 0.35h 175h 75 datasets

Note: Inference times for 500 datasets as well as the number of datasets for break-even with BayesFlow for the SMC-MMD,
SNPE-A, SNPE-B, and SNPE-C methods are extrapolated from the wall-clock running time on a single dataset, so these are
approximate quantities.

N ~ U(100,1000) at each training iteration. Training the networks took a little less than a day with the online learning
approach. Inference on 1000 datasets with 2000 posterior samples per parameter took approximately 7.39 seconds.

In order to investigate whether amortized inference is advantageous for this model, we additionally apply a version of
the SMC-ABC algorithm available in the pyABC package [27] to a single dataset with N = 500. Since no sufficient
summary statistics are available for EAM data, we apply the maximum mean discrepancy (MMD) metric as a distance
between the full raw empirical RT distributions, in order to prevent information loss [39]. Since the MMD is expensive
to compute, we use a GPU implementation to ensure that computation of MMD is not a bottleneck for the comparison.
In order to achieve good approximation with 2000 samples from the SMC-MMD approximate posterior, we run the
algorithm for 20 populations with a final rejection threshold ¢ = 0.04. We also draw 2000 samples from the approximate
posterior obtained by applying our pre-trained BayesFlow networks to the same dataset.

Along SMC-MMD, we apply three recent methods for neural density estimation, SNPE-A [37], SNPE-B [30], and
SNPE-C ([16]], also dubbed APT). Since these methods all depend on summary statistics of the data, we compute
the first 6 moments of each empirical response time distribution as well as the fractions of correct/wrong responses.
We train each method for a single round with 100 epochs and 5000 simulated datasets, in order to keep running time
at a minimum. Also, we did not observe improvement in performance when training for more than one round. For
each model, we sample 2000 samples from the approximate joint posterior to align the number of samples with those
obtained via SMC-MMD.

The comparison results are depicted in[Figure 5] We first focus on the comparison with SMC-MMD on the single dataset.
[Figure 5a]depicts marginal and bivariate posteriors obtained by BayesFlow and SMC-MMD. The approximate posteriors
of BayesFlow appear noticeably sharper. Observing the SCB plots (Figure 6b), we can conclude that the approximate
posteriors of BayesFlow mirror the sharpness of the true posterior, since otherwise the SCB plots would show marked
deviations from uniformity. Further, depicts the marginal posteriors obtained from the application of each
method. Noticeably, performance and sharpness varies across the methods and parameters, with all methods yielding
good point-estimate recovery via posterior means in terms of the NRMSE and R? metrics.

Importantly, summarizes the advantage of amortized inference for the LFM model in terms of efficiency. For
instance, compared to SMC-MMD, the extra effort of learning a global BayesFlow model upfront is worthwhile even
after as few as 5 datasets, as inference with SMC-MMD would have taken more than a day to finish. On the other
hand, the break-even for SNPE-C/APT occurs after 75 datasets, so in cases where only a few dozens of datasets are

16



A PREPRINT - DECEMBER 3, 2020

considered, case-based inference might be preferable. However, the difficulties in manually finding meaningful and
efficiently computable summary statistics may eat up possible savings even in this situation. We acknowledge that our
choices in this respect might be sub-optimal, so performance comparisons should be treated with some caution.

We note, that after a day of training, the pre-trained networks of BayesFlow take less than 5 seconds to perform inference
on 500 datasets even with maximum number of trials N = 1000. Using the case-based SMC-MMD algorithm, 500
inference runs would have taken more than half a year to complete. We also note, that parallelizing separate inference
threads across multiple cores or across nodes of a (GPU) computing cluster can dramatically increase the wall-clock
speed of the case-based methods considered here. However, the same applies to BayesFlow training, since its most
expensive part, the simulation from the forward model, would profit the most from parallel computing.

The global performance of BayesFlow over all validation datasets and all trial sizes N is depicted in . First,
we observe excellent recovery of all LFM parameters with NRMSEs ranging between 0.008 and 0.048 and R~ between
0.972 and 0.99 for the maximum number of trials. Importantly, estimation remains very good across all trial numbers,
and improves as more trials become available (Figure 6a). The parameter v appears to be most challenging to estimate,
requiring more data for good estimation, whereas the non-decision time parameter ¢ can be recovered almost perfectly
for all trial sizes. Last, the SCB histograms indicate no systematic deviations across the marginal posteriors (Figure 6b).

3.7 Stochastic Differential Equations - The SIR Epidemiology Model

With this example, we want to further corroborate the excellent global performance and probabilistic calibration
observed for the LFM model on a non-i.i.d. stochastic ODE model. For this, we study a compartmental model from
epidemiology, whose output comprises variable-sized multidimensional and inter-dependent time-series. It is therefore
of interest to investigate how our method performs when applied to data which is the direct output of an ODE simulator.

Compartmental models in epidemiology describe the stochastic dynamics of infectious diseases as they spread over a
population of individuals [23}[20]. The parameters of these models encode important characteristics of diseases, such as
infection and recovery rates. The stochastic SIR model describes the transition of NV individuals between three discrete
states — susceptible (.9), infected (I), and recovered (R) — whose dynamics follow the equations:

AS = —ANgy (36)
NI = ANgr — ANgr (37)
AR = ANg (38)
ANgy ~ Binomial(S,1 — exp (_ﬁ]{/'At>) (39
ANir ~ Binomial(I,1 — exp (—yAt)) (40)

where S + I + R = N give the number of susceptible, infected, and recovered individuals, respectively. The parameter
[ controls the transition rate from being susceptible to infected, and v controls the transition rate from being infected to
recovered. The above listed stochastic system has no analytic solution and thus requires numerical simulation methods
for recovering parameter values from data. Cast as a parameter estimation task, the challenge is to recover 8 = {5, v}
from three dimensional time-series data ;.7 where each x; € N3 is a triple containing the number of susceptible (5),
number of infected ([), and recovered (R) individuals at time ¢.

During training of the networks, we simulate time-series from the stochastic SIR model with varying lengths. The
number of time points 7" is drawn from a uniform distribution 7" ~ /(200, 500) at each training iteration. For small
T, the system has not yet reached an equilibrium (i.e., not all individuals have transitioned from being I to R). It is
especially interesting to see if BayesFlow can recover the rate parameters, while the process dynamics are still unfolding
over time. Training the networks took approximately two hours with the online learning approach. Inference on 1000
datasets with 2000 posterior samples per parameter took approximately 1.1 seconds.

The results on the SIR model are depicted in [Figure 7 In line with the previous examples, we observe very good
recovery of the true parameters, with NRMSE at 7" = 500 around 0.03, and R2s around 0.99. We observe decent
performance even at smaller T's and the expected improvements as 7" increases. Specifically, the posterior variance
shrinks as 7" increases, The SCB plots indicate that the approximate posteriors are well calibrated, with the approximate
posterior mean of 3 slightly overestimating the true parameter values in the lower range.

3.8 Learned vs. Hand-Crafted Summaries: The Lotka-Volterra Population Model

See Appendix A

17



A PREPRINT - DECEMBER 3, 2020

L0 NRMSE=0.031 NRMSE=0.029 -6
o0 0.98
0gl R=0989 081 R2=0.986 o7& :

0.97

0.6 o
% 0.96

True

0.4 0.95 1

0.2 0.944

— B
0.93
004, 00 & 0.02 —
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 200 300 400 500 200 300 400 500
Estimated Number of time points (T) Number of time points (T)

(a) Parameter recovery (T' = 500) (b) Performance over all T's

B Y B %
0.055
0.040

0.050
0.035

o
o
=
vl

0.030
0.040

Posterior SD

0.035 0.025

0.030 0.020
50 100 150 200 250 0 200 300 400 500 200 300 400 500
Rank statistic Number of time points (T) Number of time points (T)
(¢) Simulation-based calibration (SBC) (d) Posterior contraction over T’

Figure 7: BayesFlow results obtained on the stochastic SIR model.

4 Discussion

In the current work, we proposed and explored a novel method which uses invertible neural networks to perform globally
amortized approximate Bayesian inference. The method, which we named BayesFlow, requires only simulations from a
forward model to learn an efficient probabilistic mapping between data and parameters. We demonstrated the utility of
BayesFlow by applying it to models and data from various research domains. Further, we explored an online learning
approach with variable number of observations per iteration. We demonstrated that this approach leads to excellent
parameter estimation throughout the examples considered in the current work. In theory, BayesFlow is applicable to
any mathematical forward model which can be implemented as a computer simulation. In the following, we highlight
the main advantages of BayesFlow.

First, the introduction of separate summary and inference networks renders the method independent of the shape or the
size of the observed data. The summary network learns a fixed-size vector representation of the data in an automatic,
data-driven manner. Since the summary network is optimized jointly with the inference network, the learned data
representation is encouraged to be maximally informative for inferring the parameters’ posterior. This is particularly
useful in settings where appropriate summary statistics are not known and, as a consequence, relevant information
is lost through the choice of sub-optimal summary functions. However, if sufficient statistics are available in a given
domain, one might omit the summary network altogether and feed these statistics directly to the invertible network.

Second, we showed that BayesFlow generates samples from the correct posterior under perfect convergence without
distributional assumptions on the shape of the posterior. This is in contrast to variational methods which optimize a
lower-bound on the posterior [26), 24], and oftentimes assume Gaussian approximate posteriors. Additionally, we also
showed throughout all examples that the posterior means generated by the BayesFlow method are mostly excellent
estimates for the true values. Beyond this, the fact that the BayesFlow method recovers the full posterior over parameters
does not necessitate the usage of point estimates or summary statistics of the posterior. Further, we observe the desired
posterior contraction (posterior variance decreases with increasing number of observations) and better recovery with
increasing number of observations. These are indispensable properties of any Bayesian parameter estimation method,
since they mirror the decrease in epistemic uncertainty and the simultaneous increase in information due to availability
of more data.

Third, the largest computational cost of BayesFlow is paid during the training phase. Once trained, the networks
can efficiently compute the posterior for any observed dataset arising from the forward model. This is similar to the
recently introduced prepaid method [33]]. However, this method memorizes a large database of pre-computed summary

18



A PREPRINT - DECEMBER 3, 2020

statistics for fast nearest-neighbor inference, whereas a BayesFlow’s network weights define an abstract representation
of the relationship between data and parameters over the whole space of hidden parameters. Traditionally, abstract
representations like this only existed for analytically invertible model families, whereas more complex forward models
required case-based inference, that is, expensive re-training for each observed dataset. Amortized inference as realized
by BayesFlow is thus especially advantageous for exploring, testing and comparing competing scientific hypotheses in
research domains where an intractable model needs to be fit to multiple independent datasets.

Finally, all computations in the BayesFlow method benefit from a high degree of parallelism and can thus utilize the
advantages of modern GPU acceleration.

These advantages notwithstanding, limitations of the proposed method should also be mentioned. Although we could
provide a theoretical guarantee that BayesFlow samples from the true joint posterior under perfect convergence, this
might not be achieved in practice. Therefore, is it essential that proper calibration of point estimates and estimated joint
posteriors is performed for each application of the method. Fortunately, validating a trained BayesFlow architecture is
easy due to amortized inference. Below, we discuss potential challenges and limitations of the method.

First, the design of the summary network and inference networks is a crucial choice for achieving optimal performance
of the method. As already mentioned, the summary network should be able to represent the observed data without losing
essential information and the invertible network should be powerful enough to capture the behavior of the forward
model Nevertheless, in some real-world scenarios, there might be little guidance on how to actually construct suitable
summary networks. Recent work on probabilistic symmetry [6] and algorithmic alignment [52] as well as our current
experiments do, however, provide some insights about the design of summary networks. For instance, i.i.d. data induce
a permutation invariant distribution which is well modeled with a deep invariant network [6]]. Data with temporal or
spatial dependencies are best modeled with recurrent [21]], or convolutional [41] networks. When pairwise or multi-way
relationships are particularly informative, attention [48]] or graph networks [52] appear as reasonable choices. On the
other hand, the depth of the invertible network should be tailored to the complexity of the mathematical model of
interest. More ACBs will enable the network to encode more complex distributions but will increase training time.
Very high-dimensional problems might also require very large networks with millions of parameters, up to a point
where estimation becomes practically unfeasible. However, most mathematical models in the life sciences prioritize
parsimony and interpretability, so they do not contain hundreds or thousands of latent parameters. In any case, future
applications might require novel network architectures and solutions which go beyond our initial recommendations.

Another potential issue is the large number of neural network and optimization hyperparameters that might require
fine-tuning by the user for optimal performance on a given task. We observe that excellent performance is often achieved
with default settings. Using larger networks consisting of 5 to 10 ACBs does not seem to hurt performance or destabilize
training, even if the model to be learned is relatively simple. Based on our results, we expect that a single architecture
should be able to perform well on models from a given domain. Future research should investigate this question of
generality by applying the method to different or even competing models within different research domains. Future
research should investigate the impact of modern hyperparameter optimization methods such as Bayesian optimization
[14].

Finally, even though modern deep learning libraries allow for rapid and relatively straightforward development of
various neural network architectures, the implementational burden associated with the method is non-trivial. Thus, we
are currently developing a general user-friendly software, which will abstract away most intricacies from the users of
our method.

We hope that the new BayesFlow method will enable researchers from a variety of fields to accelerate model-based
inference and will further prove its utility beyond the examples considered in this paper.

Acknowledgment

We thank Paul Biirkner, Manuel Haussmann, Jeffrey Rouder, Raphael Hartmann, David Izydorczyk, Hannes Wendler,
Chris Wendler, and Karin Prillinger for their invaluable comments and suggestions that greatly improved the manuscript.
We also thank Francis Tuerlinckx and Stijn Verdonck for their support and thought-provoking ideas.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In /2th
USENIX Symposium on Operating Systems Design and Implementation, pages 265-283, 2016.

19



A PREPRINT - DECEMBER 3, 2020

[2] Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W Pellegrini, Ralf S Klessen, Lena
Maier-Hein, Carsten Rother, and Ullrich Kéthe. Analyzing inverse problems with invertible neural networks. In
Intl. Conf. on Learning Representations, 2019.

[3] Lynton Ardizzone, Carsten Liith, Jakob Kruse, Carsten Rother, and Ullrich Ko6the. Guided image generation with
conditional invertible neural networks. arXiv:1907.02392, 2019.

[4] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and
the classical bias—variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849—-15854,
2019.

[5] Daniele Bigoni, Olivier Zahm, Alessio Spantini, and Youssef Marzouk. Greedy inference with layers of lazy
maps. arXiv:1906.00031, 2019.

[6] Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetry and invariant neural networks.
arXiv:1901.06082, 2019.

[7] William M Bolstad and James M Curran. Introduction to Bayesian statistics. John Wiley & Sons, 2016.

[8] Laming Chen, Guoxin Zhang, and Eric Zhou. Fast greedy map inference for determinantal point process to
improve recommendation diversity. In Advances in Neural Information Processing Systems, pages 5622-5633,
2018.

[9] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. arXiv:1911.01429,
2019.

[10] Katalin Csilléry, Michael GB Blum, Oscar E Gaggiotti, and Olivier Frangois. Approximate Bayesian Computation
(ABC) in Practice. Trends in Ecology & Evolution, 25(7):410-418, 2010.

[11] Matthew C Deans. Maximally informative statistics for localization and mapping. In Proceedings 2002 IEEE
International Conference on Robotics and Automation (Cat. No. 02CH37292), volume 2, pages 1824—1829. IEEE,
2002.

[12] Gianluca Detommaso, Jakob Kruse, Lynton Ardizzone, Carsten Rother, Ullrich K&the, and Robert Scheichl.
HINT: hierarchical invertible neural transport for general and sequential bayesian inference. arXiv:1905.10687,
2019.

[13] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. arXiv:1605.08803,
2016.

[14] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger Hoos, and Kevin
Leyton-Brown. Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In
NIPS workshop on Bayesian Optimization in Theory and Practice, volume 10, page 3, 2013.

[15] Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with LSTM.
Neural Computation, 12(19):2451-2471, 2000.

[16] David S Greenberg, Marcel Nonnenmacher, and Jakob H Macke. Automatic posterior transformation for
likelihood-free inference. arXiv:1905.07488, 2019.

[17] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola. A kernel
two-sample test. Journal of Machine Learning Research, 13(Mar):723-773, 2012.

[18] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood and adversarial
learning in generative models. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[19] John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaussian mixture
models. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07,
volume 4, pages IV-317. IEEE, 2007.

[20] Herbert W Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):599-653, 2000.

[21] Seong Jae Hwang, Zirui Tao, Won Hwa Kim, and Vikas Singh. Conditional recurrent flow: Conditional generation
of longitudinal samples with applications to neuroimaging. arXiv:1811.09897, 2018.

[22] Bai Jiang, Tung-yu Wu, Charles Zheng, and Wing H Wong. Learning summary statistic for approximate bayesian
computation via deep neural network. Statistica Sinica, pages 1595-1618, 2017.

[23] Matt J Keeling and Pejman Rohani. Modeling infectious diseases in humans and animals. Princeton University
Press, 2011.

[24] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. stat, 1050:1, 2014.

20



A PREPRINT - DECEMBER 3, 2020

[25] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In Advances in
Neural Information Processing Systems, pages 10215-10224, 2018.

[26] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow. In Advances in Neural Information Processing Systems,
pages 4743-4751, 2016.

[27] Emmanuel Klinger, Dennis Rickert, and Jan Hasenauer. pyabc: distributed, likelihood-free inference. Bioinfor-
matics, 34(20):3591-3593, 2018.

[28] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal approximator. In
Advances in Neural Information Processing Systems, pages 6169-6178, 2018.

[29] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 3431-3440, 2015.

[30] Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Ocal, Marcel Nonnenmacher, and Jakob H
Macke. Flexible statistical inference for mechanistic models of neural dynamics. In Advances in Neural
Information Processing Systems, pages 1289-1299, 2017.

[31] Ulf Kai Mertens. Deep learning methods for likelihood-free inference: approximating the posterior distribution
with convolutional neural networks. PhD thesis, Heidelberg University, 2019.

[32] Ulf Kai Mertens, Andreas Voss, and Stefan Radev. Abrox—a user-friendly python module for approximate
bayesian computation with a focus on model comparison. PloS one, 13(3):e0193981, 2018.

[33] Merijn Mestdagh, Stijn Verdonck, Kristof Meers, Tim Loossens, and Francis Tuerlinckx. Prepaid parameter
estimation without likelihoods. PLoS computational biology, 15(9):e1007181, 2019.

[34] Steven Mileti¢, Brandon M Turner, Birte U Forstmann, and Leendert van Maanen. Parameter recovery for the
leaky competing accumulator model. Journal of Mathematical Psychology, 76:25-50, 2017.

[35] Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. A generative model for zero shot
learning using conditional variational autoencoders. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 2188-2196, 2018.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[37] George Papamakarios and lain Murray. Fast e-free inference of simulation models with bayesian conditional
density estimation. In Advances in Neural Information Processing Systems, pages 1028-1036, 2016.

[38] George Papamakarios, David C Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. arXiv:1805.07226, 2018.

[39] Mijung Park, Wittawat Jitkrittum, and Dino Sejdinovic. K2-ABC: approximate bayesian computation with kernel
embeddings. In Intl. Conf. Artificial Intelligence and Statistics, pages 398—407, 2016.

[40] Matthew D Parno and Youssef M Marzouk. Transport map accelerated markov chain monte carlo. SIAM/ASA
Journal on Uncertainty Quantification, 6(2):645-682, 2018.

[41] Stefan T Radev, Ulf K Mertens, Andreas Voss, and Ullrich Kothe. Towards end-to-end likelihood-free inference
with convolutional neural networks. British Journal of Mathematical and Statistical Psychology, 2019.

[42] Roger Ratcliff and Gail McKoon. The diffusion decision model: theory and data for two-choice decision tasks.
Neural computation, 20(4):873-922, 2008.

[43] Louis Raynal, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. ABC
random forests for Bayesian parameter inference. Bioinformatics, 35(10):1720-1728, 2018.

[44] Scott A Sisson and Yanan Fan. Likelihood-free MCMC. Chapman & Hall/CRC, New York.[839], 2011.

[45] Mikael Sunnéker, Alberto Giovanni Busetto, Elina Numminen, Jukka Corander, Matthieu Foll, and Christophe
Dessimoz. Approximate bayesian computation. PLoS computational biology, 9(1):e1002803, 2013.

[46] Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating bayesian inference
algorithms with simulation-based calibration. arXiv:1804.06788, 2018.

[47] Brandon M Turner and Per B Sederberg. A generalized, likelihood-free method for posterior estimation. Psycho-
nomic bulletin & review, 21(2):227-250, 2014.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages
5998-6008, 2017.

21



A PREPRINT - DECEMBER 3, 2020

[49] Andreas Voss, Veronika Lerche, Ulf Mertens, and Jochen Voss. Sequential sampling models with variable
boundaries and non-normal noise: A comparison of six models. Psychonomic bulletin & review, pages 1-20,
2019.

[50] Darren J Wilkinson. Stochastic modelling for systems biology. CRC press, 2011.

[51] Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466(7310):1102,
2010.

[52] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. What can
neural networks reason about? arXiv:1905.13211, 2019.

22



A PREPRINT - DECEMBER 3, 2020

Appendix

A Learned vs. Hand-Crafted Summaries: The Lotka-Volterra Population Model

With this final example, we want to compare the performance of our method with an LSTM summary network vs.
performance obtained with a standard set of hand-crafted summary statistics. For this, we focus on the well-studied
Lotka-Volterra (LV) model. The LV model describes the dynamics of biological systems in which a population of
predators interacts with a population of prey [50]]. It involves a pair of first order, non-linear, differential equations given
by:

% = au — puv (D)
d
pie —vyv + 6 fuv 2)

where u denotes the number of preys, v denotes the number of predators, and the parameter vector controlling the
interaction between the species is 8 = («, 3,7, ).

During training of the networks, we set the initial conditions as uy = 10 and vy = 5 and consider an interval I = 15
of discrete time units with 7" = 500 time steps (samples) in between. Each sample x; in each LV time-series 1.7 is
thus a 2-dimensional vector containing the number of prey and predators in the population at time unit ¢.

We train two invertible neural networks. The first is trained jointly with an LSTM summary network which outputs a
9-dimensional learned summary statistic /., (1.7). The second uses a set of 9 typically used, hand-crafted summary
statistics [37,[38]], which include: the mean of the time series; the log variance of the time-series; the auto-correlation
of each timeseries at lags 0.2 and 0.4 time units; the cross-correlation between the two time series. The same cINN
architecture with 5 ACBs is used for both training scenarios. For each scenario, we perform the same number of
iterations and epochs. Online learning for each training scenario took approximately 4 hours in total wall-clock time.

The results obtained on the LV model are depicted in We observe notably better recovery of the true
parameter estimates when performing inference with the learned summary statistics. The approximate posteriors
are also better calibrated when conditioned on the set of 9 learned summary statistics. These results highlight the
advantages of using a summary networks when no sufficient summary statistics are available. Finally, and
depict the posteriors obtained by the two different INNs on a single dataset with ground-truth parameters
6 = (1,1,1,1). Evidently, learning the summary statistics leads to much sharper posteriors and better point-estimate
recovery.

B Computation of Validation Metrics

Normalized Root Mean Squared Error

The normalized root mean squared error (NRMSE) between a sample of true parameters {6 }_, and a sample of
estimated parameters {#(™ }M__ is given by:

M (9<m) _é<m>)2
NRMSE = Z e —

m=1

3)

max emzn

Due to the normalization factor 6,4, — 0n, the NRMSE is scale-independent, and thus suitable for comparing the
recovery across parameters with different numerical ranges. The NRMSE equals zero when the estimates are exactly
equal to the true values.

Coefficient of Determination

M

The coefficient of determination R? measures the proportion of variance in a sample of true parameters {G(m) me1

that is explained by a sample of estimated parameters {é(m)}%:l. It is computed as:

M (9(m> _ 9<m>)2
RP=1- . = 2 4)
o1 (00 — 60m))



A PREPRINT - DECEMBER 3, 2020

. . 6 . 14 . B o 14
o
6
4 e 4
2 2
0 0 0
0 5 0 5 0 100 200 0 100 200 0 100 200

(a) Parameter recovery with learned summary statistics (b) Calibration with learned summary statistics

o
o

IS

~

a
0 100 200
Rank statistic

5
Estimated

5
Estimated Rank statistic

(c) Parameter recovery with hand-crafted summary statistics (d) Calibration with hand-crafted summary statistics
| | | | Lﬂ\ m
250  5.00 0.00 5.00 10.00 0.00 2.00 000 050 100 150 000 250 500 0.00 5.00 1000 0.00 2.00 000 050 1.00 150
—— Estimated mean —— True Estimated posterior | —— Estimated mean  —— True Estimated posterior |
(e) Full posterior with learned summary statistics (f) Full posterior with hand-crafted summary statistics

Figure S1: Comparison of recovery/calibration on the LV model with learned vs. hand-crafted summary statistics (a)
Simulation-based calibration (SBC) with learned summary statistics; (b) Parameter recovery with learned summary
statistics; (¢) Parameter recovery with hand-crafted summary statistics; (d) Simulation-based calibration (SBC) with
hand-crafted summary statistics; (e) Example full posteriors obtained on a single dataset with ground-truth rate
parameters @ = (1,1, 1, 1) obtained with learned summaries; (f) The posterior obtained from the same dataset using
hand-crafted summary statistics.

where 6 denotes the mean of the true parameter samples. When R? equals 1, the estimates are perfect reconstructions
of the true parameters.

Re-simulation Error

To compute the re-simulation error E'rrg;,,, we first obtain an estimate of the true parameter value given an observed
(validations) dataset x{, ,, by computing the mean of the approximate posterior 6. Then, we run the mathematical

model to obtain a simulated dataset x3. , = g(0, £). Finally, we compute the maximum mean discrepancy (MMD,
[17]) between the observed and the simulated dataset M M D (xS, n, 3. ). The MMD is a kernel-based metric which
estimates the mismatch between two distributions given samples from the distributions by comparing all of their
moments. It equals zero when the two distributions are equal almost everywhere [17]). Thus, a low MMD indicates that
the distribution of xf. y; is close to the distribution of x{. 5,. Conversely, a high MMD indicates that the distribution of
x{. y 1s far from the distribution of x{. ;. We report the median MMD computed over all validation datasets.

Calibration Error

The calibration error Err.,; quantifies how well the coverage of an approximate posterior matches the coverage of an
unknown true posterior. Let aig be the fraction of true parameter values lying in a corresponding a-credible interval of
the approximate posterior. Thus, for a perfectly calibrated approximate posterior, cg should equal « for all « € (0, 1).
We compute the calibration error for each marginal posterior as the median absolute deviation | ap — | for 100 equally
spaced values of a € (0, 1). Therefore, the calibration error ranges between 0 and 1 with 0 indicating perfect calibration
and 1 indicating complete miscalibration of the approximate posterior.



A PREPRINT - DECEMBER 3, 2020

Kullback-Leibler Divergence

The Kullback-Leibler divergence (KIL) quantifies the increase in entropy incurred by approximating a target probability
distribution P with a distribution @). Its general form for absolutely continuous distributions is given by
> p(x)

KL(PQ) = [ ple)log s )

where p and ¢ denote the pdfs of P and (). In the case where P and @ are both multivariate Gaussian distributions, the
KL divergence can be computed in closed form [19]:

det 3,
det 33,

1
KL(P||Q) = 3 {log + TS, 1S,) —d+ (- ©

“’q)qu_l(up - ll’q)}

where 3, and X, denote the covariance matrices of p and ¢, p,, and p, the respective mean vectors, and d the number
of dimensions of the Gaussian. In the case of diagonal Gaussian distributions, EqJ6|reduces to:

d 2 2
Oq.i a *+(Mqi_ﬂpi) 1
KL(P = log —£* Bt : - = 7
(PllQ) ;:1 <0g . + 202, 5 (7)

Even though the KL divergence is not a proper distance metric, as it is not symmetric in its arguments, it can be used to
quantify the error of approximation when a closed-form solution is available.

Simulation-Based Calibration

Simulation-based calibration is a method to detect systematic biases in any Bayesian posterior sampling method [46]. It
is based on the self-consistency of the Bayesian joint distribution. Given a sample from the prior distribution 6 ~ p(6)

and a sample from the forward model & ~ p(x | é) one can integrate 6 and Z out of the joint distribution and recover
back the prior of 6:

p(0) = / (0,0, %)dido (8)
= / p(0,%]0)p(0)didd 9)
- / p(0|2)p(z | D)p(0)dzdd (10)

If the Bayesian sampling method produces samples from the exact posterior, the equality implied by Eq[T0|should hold
regardless of the particular form of the posterior. Thus, any violation of this equality indicates some error incurred by
the sampling method. The authors of [46] propose Algorithm [2|for visually detecting such violations:

Algorithm 2 Simulation-based calibration (SBC) for a single parameter 6

form=1,..., M do
: Sample 6™ ~ p(6)

1:
2
3 Simulate a dataset wgn}\? =g(6™), &)

4: Draw posterior samples {6}~ p, (6| :cgwf\;)
5 Compute rank statistic (™) = Zle 1[9([)<é(771)]
6

: Store 7 (™)
7: end for

8: Create a histogram of {r()} M

m—1 and inspect it for uniformity

Algorithm [2]is correct, since Eq[I0]implies that the rank statistic defined in line 5 should be uniformly distributed.
Hence, any deviations from uniformity indicate some interpretable error in the approximate posterior [46].



A PREPRINT - DECEMBER 3, 2020

C Model Details
The Ricker Model

Summary Network. We use a bidirectional long short-term memory (LSTM) recurrent neural network [15] for the
raw Ricker time-series. The LSTM network architecture is a reasonable choice for this example, as it is able to
capture long-term dependencies in datasets with temporal or spatial autocorrelations. LSTMs can also easily deal with
variable-length time-series.

Simulation. We place the following uniform priors over the Ricker model parameters:

p ~U(0,15) (11)
v~ U(1,90) (12)
o ~ U(0.05,0.7) (13)

These ranges appear to be very broad, as datasets generated by extreme parameter values appear implausible in
real-world scenarios. Nevertheless, we stick to broad priors for training, even though parameter recovery might degrade
at the extremes.

depicts different simulated Ricker timeseries generated via draws from the prior.

100 200

100 100

500

o

0 500 0 500 500

Generation number t

o

Number of individuals
=)
o
o o
o

100

200 100

200

0 0 0
500 0 500 0 500 0 500

E

-

o

500

0

Figure S2: Example Ricker datasets generated with different parameters.

The Lévy-Flight Model

Summary Network. We use a permutation invariant neural network [6] for the i.i.d. reaction times (RT) data. Similarly to
the toy Regression example, each response in an RT dataset is assumed to be independent of all others, so permutations
of the dataset must lead to the same parameter estimates.

Simulation. We place the following uniform priors over the LFM parameters, since they are broad enough to cover the
range of realistic RT distributions encountered in empirical choice RT scenarios:

vo ~ U(0,6) (14)
vy ~U(-6,0) (15)
zer(O?) 0.7) (16)
a ~U(0.6,3) (17)
to ~ U(0.3,1) (18)
a~U(1,2) (19)
depitcs different simulated RT distributions generated via draws from the prior.



A PREPRINT - DECEMBER 3, 2020

1.0 ‘o 10
Z 10 2 .
205 25 5
[ 1 .
° ,/\ ,ﬁ/\
0.0 0 o Lefaal i 0.0 L=\ R
5 0 s 0 1 25 00 25 0 2 100 1

Number of trials (n)

4 20
1.0 5.0
10
2 0.5 2.5
0 0 0.0 0 0.0
-1 0 1 0 5

Upper threshold Lower threshold ]

w

o
=
o
N

Figure S3: Example RT distributions generated with different parameters.

The Stochastic SIR Model

Summary Network. We use a 1D fully convolutional neural network for the raw SIR time-series into fixed-size
vectors. Here, we choose a convolutional network architecture over the previously mentioned LSTM, as convolutional
networks are more computationally efficient. Further, we wanted to underline the utility of 1D convolutional networks
for multidimensional time-series data. Finally, convolutional networks can also deal with variable input sizes.

Simulation. We place the following uniform priors over the two rate parameters of the stochastic SIR model:

B~ U(0.01,1) (20)
v ~U(0.01, B) (21

These ranges were chosen based on empirical plausibility of the generated SIR time-series.

depicts different SIR timeseries generated via draws from the prior.

04 . 0-_/—’/' 0_—/

0 200 400 0 200 400 0 200 400
Number of time points (T)

e

0 200 400

Number of individuals

0= -

T T T T T T 'r;r—r—
0 200 400 0 200 400 0 200 400

— Susceptible Infected  —— Recovered |

Figure S4: Example SIR timeseries generated with different parameters.

The Lotka-Volterra Model
Summary Network. We use a bidirectional long short-term memory (LSTM) recurrent neural network for the raw
LV time-series (as in the Ricker example).

Simulation. We place the following broad uniform priors over the LV parameters. Some of the parameter combinations
produced divergent simulations, which we removed during online learning.



A PREPRINT - DECEMBER 3, 2020

a ~ U(exp (—2),exp (2)) (22)
B~ U(exp (—2),exp (2)) (23)
v~ U(exp (—2),exp (2)) (24)
d ~U(exp (—2),exp (2)) (25)
D Example Posteriors on Ricker Datasets
Marginal posteriors from ten validation datasets simulated from the Ricker model are depicted in[Figure S5] We observe
widely different posterior shapes, highlighting the importance of working with arbitrary posterior shapes.
r o 0 u
40.00 50.00  60.00 0.20 0.40 6.00 6.50 0.00 1.00
80.00  90.00 010 020 030 14.50 15.00 15.50 0.00 1.00
50.00 75.00 100.00 025 050 0.75 1.40 1.60 0.00 1.00
22.50 25.00 27.50 0.05 010 0.15 11.50 12.00 12.50 0.00 1.00
0.00  100.00 0.00 1.00 0.00 0.20 0.00 1.00
60.00  70.00 0.20 0.40 13.00 14.00 0.00 1.00
30.00 40.00 0.40 0.60 14.00 15.00 0.00 1.00
10.00  12.50 010 0.0 3.00 350  4.00 0.00 1.00
40.00 60.00 80.00 040  0.60 9.00 10.00 0.00 1.00
6.00  6.50

30.00 35.00 40.00

0.05 0.10 0.15

—— Estimated mean

—— True

7.00

Estimated posterior |

Figure S5: Ten example Ricker marginal posteriors

0.00 1.00



	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Notation
	2.2 Learning the Posterior
	2.3 Composing Invertible Networks
	2.4 Summary Network
	2.5 Putting It All Together

	3 Experiments
	3.1 Training the Networks
	3.2 Performance Validation
	3.3 Proof of Concept: Multivariate Normal Distribution
	3.4 Multimodal Posterior - Gaussian Mixture Model
	3.5 Stochastic Time-Series Model - The Ricker Model
	3.6 A Model of Perceptual Decision Making - The Lévy-Flight Model
	3.7 Stochastic Differential Equations - The SIR Epidemiology Model
	3.8 Learned vs. Hand-Crafted Summaries: The Lotka-Volterra Population Model

	4 Discussion
	A Learned vs. Hand-Crafted Summaries: The Lotka-Volterra Population Model
	B Computation of Validation Metrics
	C Model Details
	D Example Posteriors on Ricker Datasets


