
Robust Q learning

Tue Herlau

November 16, 2022

1 Introduction

The work is an extension of [LBB+22]. The idea is fairly straight-forward.
The Q-update which is robust within a KL distance of δ is given as a mini-
mization problem. The implementation, however, really sucks.

We try to fix this by decompositing the value function. Let the temporal
observations be:

x0, x1, · · · (1)

We define a state as a block of K of these:

st = xt−K+1:t (2)

This means that the transition probability of the states is partly deterministic
as the first K − 1 elements are simply copied into the last K − 1 elements of
the next state.

Let ŝt = xt−K+1:t−1 and st = s =
[
ŝ x

]
Then we parameterize the

optimal value function V (s) as a quadratic function:

V (s) ≈ V̂ (s) = a(ŝ) +
1

2σv(ŝ)2
(µ(ŝ)− x)2 (3)

We also assume that the transition dynamics is jointly Gaussian, viz.:

p0(s
′|s, a) = N (x′|µf (s, a), σf (s, a)2) (4)

1

1.1 Bellman operator

The bellman operator defined in the main reference is:

T rob
δ (Q)(s, a) = r(s, a) + γ sup

β≥0

{
−β log

(
Ep0s,a

[
e−

1
β
maxb Q(s′,b)

])
− βδ

}
(5)

This parametrization now allows us to solve the integral and get an ex-
plicit expression for the minimization problem. The integral is a standard
product of two Gaussians and it becomes:

Ep0

[
e

−V (s′)
β

]
= e−

a
β

√
2πβ (σv)2

e
−1
2

(µf−µv)
2

S2
β√

2πS2
β

 , S2
β =

(
σf
)2

+ β (σv)2 (6)

We plug it in and get that the quantity to be optimized is:

a− β log(
√
2πσv)− β

1

2
log β + β

1

2

(
µf − µv

)2
S2
β

+ β log
√
2π + β logSβ − βδ

(7)

= a− β
1

2
log β + β

1

2

(
µf − µv

)2
S2
β

+ β logSβ − β(δ + log σv) (8)

= a− β log

(√
βσv

Sβ

)
+ β

1

2

(
µf − µv

)2
S2
β

− βδ (9)

= a− β log

(√
βσv√

(σ2)2 + β(σv)2

)
+ β

1

2

(
µf − µv

)2
S2
β

− βδ (10)

= a+
1

2
β log

(
1 +

(σf)2

β(σv)2

)
+ β

1

2

(
µf − µv

)2
(σf)2 + β(σv)2

− βδ (11)

(12)

(TODO: simplify that ridiculous mess). The questions is if we can help
ourselves a bit in the optimization task by somehow showing this function
has a single optimum or similar – I am not sure that is possible, but you
never know. A step towards this is to differentiate it. vlg., lets assume it has

2

the form:

F (x) = x log

(
1 +

λ

x

)
+

A
λ
x
+ 1

−Bx (13)

= x log h(x) +
A

h(x)
−Bx (14)

h(x) = 1 +
λ

x
(15)

We differentiate to get:

F ′(x) = log h(x) + x
h′(x)

h(x)
+

h′(x)

h(x)

(
−A

h(x)

)
−B (16)

= log h(x) +
h′(x)

h(x)

[
h(x)x− A

h(x)

]
−B (17)

h′(x)

h(x)
=

− λ
x2

1 + λ
x

=
1

x

−λ

x+ λ
(18)

So therefore

F ′(x) = log h(x)−B − λ

x+ λ

[
xh(x)− A

xh(x)

]
(19)

= log h(x)−B − λ

x+ λ

[
x+ λ− A

x+ λ

]
(20)

So we can now start to bound this. We get that

F ′(x) ≤ λ

x
−B − λ

x+ λ

[
x+ λ− A

x+ λ

]
(21)

Solving for F ′(x) ≤ 0 can be done by reducing this to a 3rd degree polynomial
and solve for the smallest root. Less exactly, we can also just ignore higher-
order terms in x and solve to get:

0 <
λ

x
−B − λ

x+ λ
+

A

(x+ λ)x
(22)

x >
1

2B

√
(λB)2 + 4B(λ2 + λA)− λ

2
(23)

3

This can be simplified obviously (TODO). The lower bound can be obtained
by simply dropping terms to get:

F ′(x) > log h(x)−B − 1 (24)

x ≤ λ

eB+1 − 1
(25)

(TODO: Much better lower bound can be obtained by back-substituting
upper and lower bounds into expression for F ′ and solve again for lower
bound. This will give explicit A-dependency.

This gets us an interval for x within which to search for a root using the
bisection method:

x ∈
[

λ

eB+1 − 1
;

1

2B

√
(λB)2 + 4B(λ2 + λA)− λ

2

]
(26)

2 Generalization:

Suppose the dynamics of the model is given by:

xk+1 = f(xk, ak, Lϵk) (27)

wk ∼ PW (·) (28)

Where L is a linear operator (let’s see). We then define the state as:

sk ≡


xk

xk−1

ak−1

Lϵk

 (29)

This definition contains redundant information. The update rule is then

sk+1 = f̄(sk, ak, Lϵk) =


f(xk, ak, Lϵk)

xk

ak
Lϵk

 (30)

Then the hard part of the update rule is:

Ep0s,a

[
e−

V (s′)
β

]
(31)

4

Where p0 is the dynamics of the (unperturbed) version of the system. To
compute the expectation, we will assume a special form of the value function
namely:

V (sk+1) ≈ V̂ (sk+1) = V (1)(xk, ak) + V (2)(xk, ak)
⊤wk +

1

2
w⊤

k V
(3)(xk, ak)wk

(32)

We will also assume the transition dynamics takes the form:

p0s,a ≈ p̂0s,a(s
′|s, a) = V (1)(xk, ak) + V (2)(xk, ak)

⊤wk +
1

2
w⊤

k V
(3)(xk, ak)wk

(33)

(34)

Then the transition function is assumed to be:

xk+1 ≈ f̄(xk, ak, wk) = f (1)(xk, ak) + f (2)(xk, ak)
⊤wk +

1

2
w⊤

k f
(3)(xk, ak)wk

(35)

The expectation can then still be computed exactly, and the coefficients above
can be learned using regression (even local linear?).

3 Question: Can we use an embedding?

Assume a new generative model of the form:

xk+1 = f(h(xk, ak) + wk) (36)

Where h is an embedding and wk is assumed to be N (0, I). Let g = f−1 so
that

g(xk+1) = h(xk, ak) + wk. (37)

Then it holds that

p(xk+1|xk, ak)dxk+1 = N (wk = g(xk+1)− h(xk, ak); 0, I)|Jg(xk+1)|dwk (38)

We also assume that xk−1, ak−1 and wk−1 are part of the state sk. There-
fore we can introduce the approximation (assuming W is a second degree
polynomial):

V (sk+1) ≈ V̂ (sk+1) = V̂ (xk, ak, wk) = Wh(xk,ak)(wk; Φ). (39)

5

3.0.1 Defining objectives

When learning the objectives, we train Q by minimizing the specific objective
given in the paper (viz., using the simulator) as:

Q(s, a) = ... (40)

So you could just as well train V directly and use the simulator to define Q...
but this way is more elegant (or is it?). Robust learning requires V internally
(to get 2nd degree polyal). Or does it?

The Q-learning objective satisfy the Bellman equation

Q(sk, ak) = inf
KL(p|p0)<δ

{
r(sk, ak) + γmax

b
Q(sk+1, b)

}
(41)

Re-writing this, and assuming for simplicity reward only depends on state/action,
we get that for any constant C:

Qrob(sk, ak) = r(sk, ak) + sup
β>0

{
−β logE

[
e−

maxb Qrob(sk+1,b)

β

]
+ δβ

}
(42)

= r(sk, ak) + C + sup
β>0

{
−β logE

[
e−

V rob(sk+1)−C

β

]
+ δβ

}
(43)

V rob(sk) = max
b

Qrob(sk, b) (44)

for any constant C (probably a bad idea to have such a constant). Then to
proceed, we need to find a way to compute the above expectation exactly
and update. Let’s say we divide this into two parts. The first computes
this expectation (and updates). The second considers how to fit V rob. For
each V rob, we can compute the target easily. Then perform the update as a
regression problem (batched) which is trained jointly with o. IOW, we get
that:

V rob(sk) = max
b

Qrob(sk, b) (45)

≈ V̂ rob(sk) (46)

= C0(h(xk−1, ak−1)) + C1(h(xk−1, ak−1))wk +
1

2
w⊤

k C2(h(xk−1, ak−1))wk

(47)

wk = g(xk)− h(xk−1, ak−1) (48)

6

Train this using gradient descent.
What happens if you use the Q-learning function and try to integrate?

Let each coordinate be a 2nd degree polynomial.
V to minimize the recursion:
is a second-order approximation of V only depending on the latent state

h(xk, ak). We can learn the latent embedding by minimizing a loss over both
V and over g (issue: g most well-defined. Possibly fix h insofar as second-
order approx is concerned and use that ϵ automatically normal? Alternatively
use that V must satisfy, before optimization, that:

V (sk+1) = max akE [r(xk, ak) + V (xk+1)] (49)

Then it holds that

Jg(xk+1) (50)

that hk = h(xk, ak, wk) is a latent embedding of some sort and the next
state is given by:

xk+1 = o(hk) (51)

Given embedding, we can write the value function as a quadratic in embed-
ding parameter?

In other word the expectation is with respect to

0 (52)

However, we can re-write this to be:

p(s′|s, a)

We will then assume a special parametrization of the value function in the
form that:

V (s′) ≈ V (1)(s) + V (2)(s)Lϵ+ (Lϵ)⊤V (3)(s)(Lϵ) (53)

There are some questions about whether this is a rigorous construction or
not. The three matrices need to be learned using a neural network; this is
done by simply regressing

7

References

[LBB+22] Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu,
Zhengqing Zhou, and Zhengyuan Zhou. Distributionally robust
q-learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceed-
ings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages
13623–13643. PMLR, 17–23 Jul 2022.

8

	Introduction
	Bellman operator

	Generalization:
	Question: Can we use an embedding?
	Defining objectives

