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Markov Processes

Markov Reward Processes

Markov Decision Processes

Extensions to MDPs
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Lecture 2: Markov Decision Processes
L Markov Processes
L Introduction

Introduction to MDPs

m Markov decision processes formally describe an environment
for reinforcement learning

m Where the environment is fully observable

m i.e. The current state completely characterises the process

m Almost all RL problems can be formalised as MDPs, e.g.

m Optimal control primarily deals with continuous MDPs
m Partially observable problems can be converted into MDPs
m Bandits are MDPs with one state
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Lecture 2: Markov Decision Processes
L Markov Processes

LMarkov Property

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

P[St41 | Se] = P[Se41 | S0, St

m The state captures all relevant information from the history
m Once the state is known, the history may be thrown away

m i.e. The state is a sufficient statistic of the future
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Lecture 2: Markov Decision Processes
L Markov Processes

LMavkov Property

State Transition Matrix

For a Markov state s and successor state s, the state transition
probability is defined by

Pss’ =P [St_;,_]_ = SI | St = S]

State transition matrix P defines transition probabilities from all
states s to all successor states s/,

to
P]_]_ e P]_n
P = from

Pri --- P

where each row of the matrix sums to 1.
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Lecture 2: Markov Decision Processes
L Markov Processes
L Markov Chains

Markov Process

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, Sy, ... with the Markov property.

Definition
A Markov Process (or Markov Chain) is a tuple (S, P)
m S is a (finite) set of states

m P is a state transition probability matrix,
PSS’ =P [5t+1 = 5/ | St = S]
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Lecture 2: Markov Decision Processes

L Markov Processes
L Markov Chains

Example: Student Markov Chain
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Lecture 2: Markov Decision Processes

L Markov Processes
L Markov Chains

Example: Student Markov Chain Episodes

Sample episodes for Student Markov
Chain starting from §; = C1

517 52, () ST

0.9
0.1

05 02

e M @M M@M m C1 C2 C3 Pass Sleep

w C1 FB FB CI C2 Sleep
0 m C1 C2 C3 Pub C2 C3 Pass Sleep
= = C1 FB FB C1 C2 C3 Pub C1 FB FB

FB C1 C2 C3 Pub C2 Sleep
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Lecture 2: Markov Decision Processes

L Markov Processes

L Markov Cha

ins

Example: Student Markov Chain Transition
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes
L mrp

Markov Reward Process

A Markov reward process is a Markov chain with values.
A Markov Reward Process is a tuple (S, P, R, )
m S is a finite set of states

m P is a state transition probability matrix,

PSS/ =P [5t+1 =5 | St = S]
m R is a reward function, Rs = E [Rt1 | St = s]
m 7 is a discount factor, v € [0, 1]
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Lecture 2: Markov Decision Processes

LMarkov Reward Processes
Lmrp

Example: Student MRP
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes
L Return

Return

The return G; is the total discounted reward from time-step t.

oo
Gt =Re1+YRe2+ .. = Y Y Repita
k=0

m The discount v € [0, 1] is the present value of future rewards
m The value of receiving reward R after k + 1 time-steps is 7Y¥R.
m This values immediate reward above delayed reward.

m 7 close to 0 leads to " myopic” evaluation
m 7y close to 1 leads to "far-sighted” evaluation
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes
L Return

Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards
Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

m It is sometimes possible to use undiscounted Markov reward
processes (i.e. v = 1), e.g. if all sequences terminate.
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes
LValue Function

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return
starting from state s

v(s) =E[G: | S¢ = 5]
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes
LValue Function
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Example: Student MRP Returns

Sample returns for Student MRP:
Starting from S; = C1 with v = %

Gi=Ry+~vR3+ ... + ’YT_2RT

C1 C2 C3 Pass Sleep vw=-2-2%3-2x1+10x} = 225

C1 FB FB C1 C2 Sleep vi=—2-1x}—-1x3-2x2-2x% = —3.125

C1 C2 C3 Pub C2 C3 Pass Sleep v=-2-2%3-2xF+1xd -2 =  —3.41
— 1 1 1 1

C1FBFB C1C2C3PubCl ... vi=—2-lwd—lwfo2wg-2wgo oo

FB FB FB C1 C2 C3 Pub C2 Sleep
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Lecture 2: Markov Decision Processes

LMarkov Reward Processes

LValue Function
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Example: State-Value Function for Student MRP (1)
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Lecture 2: Markov Decision Processes

LMarkov Reward Processes

LValue Function
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Example: State-Value Function for Student MRP (2)
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Lecture 2: Markov Decision Processes

LMarkov Reward Processes

LValue Function
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Example: State-Value Function for Student MRP (3)

v(s) fory =1
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes

LBelIman Equation

Bellman Equation for MRPs

The value function can be decomposed into two parts:

m immediate reward Ry;1

m discounted value of successor state yv(S¢11)

v(s) =E[G; | St = 5]
=E [Res1+ YRey2 + Y Rega + ... | S =]
=E[Rey1+7(Res2 + YRewz + ) | St = 5]
=E[Rer1 +7Gt11 | St = 5]
=E[Rey1 +7v(St41) | St = 9]
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes

LBelIman Equation

Bellman Equation for MRPs (2)
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v(s) = E[Rey1 +9v(St41) | Se = 9]

v(s) =Rs+7 Z Pssrv(s)
s'es
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Lecture 2: Markov Decision Processes

LMarkov Reward Processes

LBelIman Equation

)
o |
=

M

Example: Bellman Equation for Student MRP
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes

LBelIman Equation

Bellman Equation in Matrix Form
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The Bellman equation can be expressed concisely using matrices,

v=TR+~Pv

where v is a column vector with one entry per state

v(1) R1 Pu ... Pun| [v(1)
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Lecture 2: Markov Decision Processes
LMarkov Reward Processes

LBelIman Equation

Solving the Bellman Equation

m The Bellman equation is a linear equation
m It can be solved directly:

v=R+~yPv
(I=vP)v=R
v=(—-vP)'R

m Computational complexity is O(n?) for n states

m Direct solution only possible for small MRPs

m There are many iterative methods for large MRPs, e.g.
m Dynamic programming
m Monte-Carlo evaluation
m Temporal-Difference learning
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes
L mpp

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

Definition
A Markov Decision Process is a tuple (S, A, P, R,~)
m S is a finite set of states
m A is a finite set of actions
m P is a state transition probability matrix,
Po =P[Sty1=5"| St =5,Ar = 4]
m R is a reward function, RZ = E[Re+1 | St =5, A = 4]
m 7 is a discount factor v € [0, 1].
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes
L mpp

Example: Student MDP

Facebook

R=-1

Quit Facebook Sleep
R=0 R=-1 R=0

Study
R=+10

Study
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes
L Policies

Policies (1)

A policy 7 is a distribution over actions given states,

w(als) =P[Ar=a | S; = 9]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At ~ W("St),vt > 0
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes
L Policies

Policies (2)

m Given an MDP M = (S, A,P,R,v) and a policy 7
m The state sequence 51, Sy, ... is a Markov process (S, P™)

m The state and reward sequence S1, R», So, ... is a Markov
reward process (S, P™, R™,~)

m where
Ply = m(als)P
acA

RI = Z w(als)R2

acA
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes
LValue Functions

Value Function

The state-value function v, (s) of an MDP is the expected return
starting from state s, and then following policy 7

Ve(s) =E; [Gt | St = 9]

Definition

The action-value function q.(s, a) is the expected return
starting from state s, taking action a, and then following policy m

Gr(s,3) =E; [G; | St = s, Ar = 4]

30 DTU Compute Example slide show April 1st, 2022


osvg-28

osvg—29

Lecture 2: Markov Decision Processes
LMarkov Decision Processes
LValue Functions

Example: State-Value Function for Student MDP
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Facebook va(s) for n(als)=0.5, y =1
=1

Quit
R=0

Facebook
R=-1

Study
R=+10
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Expectation Equation

Bellman Expectation Equation
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The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(s) = Ex [Re1 +yva(Set1) | Se = 5]
The action-value function can similarly be decomposed,

dr(s;a) = Ex [Re+1 +7Ga(Se+1, Arv1) | St = 5, Ar = 3
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Expectation Equation

Bellman Expectation Equation for V™
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V’]T(s) = Z 7r(a|s)q,r(s, a)

acA
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Lecture 2: Markov Decision Processes

)
o |
=

M

LMarkov Decision Processes

LBelIman Expectation Equation

Bellman Expectation Equation for Q™
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Expectation Equation

Bellman Expectation Equation for v, (2)
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35

ve(s) =Y _ m(als)

acA
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Expectation Equation

Bellman Expectation Equation for g, (2)
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G(s,a) =RZ+~ Z P, Z m(a'ls)gx(s, d)

s'eS aeA
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Expectation Equation

Example: Bellman Expectation Equation in Student MDP

Facebook 74=05%1+02%-13+04*27+04%*74)
=-1 +0.5*10

Facebook
R=-1

Study
R=+10
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Expectation Equation
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Bellman Expectation Equation (Matrix Form)

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve =R+ 4P v,

with direct solution

ve = (I =P IR
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes
LOptimaI Value Functions

Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

vi(s) = max vr(s)

The optimal action-value function g.(s, a) is the maximum
action-value function over all policies

g«(s,a) = max gr(s, a)

m The optimal value function specifies the best possible
performance in the MDP.
® An MDP is “solved” when we know the optimal value fn.
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LOptimaI Value Functions
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Example: Optimal Value Function for Student MDP

Facebook vi(s) fory =1
R=-1

Facebook
R=-1

Study
R=+10
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LOptimaI Value Functions

Example: Optimal Action-Value Function for Student MDP

Facebook q«(s,a) fory =1
R=-1
qs=5

Quit
R=0
qx =06

Study
R=+10
qx =10
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes
LOptimaI Value Functions

Optimal Policy

Define a partial ordering over policies

7> 7 if ve(s) > vp(s), Vs

For any Markov Decision Process
m There exists an optimal policy 7, that is better than or equal
to all other policies, 7, > w, V'
m All optimal policies achieve the optimal value function,
Vrr*(s) = V*(S)
m All optimal policies achieve the optimal action-value function,
qr. (s, 2) = gi(s, )

=
=
=

M
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LOptimaI Value Functions

Finding an Optimal Policy
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An optimal policy can be found by maximising over g.(s, a),

acA

(a19) 1 if a=argmax g.(s, a)
m«(als) =
0 otherwise

m There is always a deterministic optimal policy for any MDP

m If we know g.(s, a), we immediately have the optimal policy
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LOptimaI Value Functions

Example: Optimal Policy for Student MDP
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Facebook ms(als) for y =1
R=-1
qs=5

Quit Facebook
R=0
9% =0 Study
R=+10
qx =10
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Optimality Equation

Bellman Optimality Equation for v,
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The optimal value functions are recursively related by the Bellman
optimality equations:

vi(s) = max g«(s, a)
a
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Optimality Equation

Bellman Optimality Equation for Q*
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Optimality Equation

Bellman Optimality Equation for V* (2)
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Optimality Equation

Bellman Optimality Equation for Q@* (2)
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( !/ /) P ’
g«(s,a) =RZ+~ Z Peymax q.(s',a")
a

s'eS
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Lecture 2: Markov Decision Processes

LMarkov Decision Processes

LBelIman Optimality Equation

Example: Bellman Optimality Equation in Student MDP

Facebook 6 =max {-2 +8, -1+ 6}
R=-1
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Lecture 2: Markov Decision Processes
LMarkov Decision Processes

LBelIman Optimality Equation

Solving the Bellman Optimality Equation
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m Bellman Optimality Equation is non-linear

m No closed form solution (in general)
m Many iterative solution methods

m Value lteration

m Policy Iteration

m Q-learning

m Sarsa

50 DTU Compute

Example slide show

April 1st, 2022


osvg-48

osvg—49

)
o |
=

M

Lecture 2: Markov Decision Processes

L Extensions to MDPs

Extensions to MDPs (no exam)

m Infinite and continuous MDPs
m Partially observable MDPs

m Undiscounted, average reward MDPs
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Lecture 2: Markov Decision Processes
L Extensions to MDPs
L infinite MDPs

Infinite MDPs (no exam)

The following extensions are all possible:

m Countably infinite state and/or action spaces
m Straightforward
m Continuous state and/or action spaces
m Closed form for linear quadratic model (LQR)
m Continuous time

m Requires partial differential equations
m Hamilton-Jacobi-Bellman (HJB) equation
m Limiting case of Bellman equation as time-step — 0
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Lecture 2: Markov Decision Processes
L Extensions to MDPs
L Partially Observable MDPs

POMDPs (no exam)

A Partially Observable Markov Decision Process is an MDP with
hidden states. It is a hidden Markov model with actions.
A POMDRP is a tuple (S, A,O0,P, R, Z,v)
m S is a finite set of states
m A is a finite set of actions
m O is a finite set of observations
m P is a state transition probability matrix,
Pe =P[Sty1=5"| St =5,Ar = 4]
m R is a reward function, R2 = E[Re+1 | St =5, A = 3]
m Z is an observation function,
24, =P[Or1=0] St11=5,A: = 4
m v is a discount factor v € [0, 1].
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Lecture 2: Markov Decision Processes
L Extensions to MDPs
L Partially Observable MDPs

Belief States (no exam)

A history H; is a sequence of actions, observations and rewards,

Ht = A07 017 R17 '-'7At—1) Ol’7 Rt

A belief state b(h) is a probability distribution over states,
conditioned on the history h

b(h) = (P [S; =s" | He=h],...,P[Se = s" | H; = h])
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Lecture 2: Markov Decision Processes
L Extensions to MDPs
L Partially Observable MDPs

Reductions of POMDPs (no exam)

m The history H; satisfies the Markov property
m The belief state b(H;) satisfies the Markov property

History tree Belief tree

Bl H &
@ 02

‘v ) Hodt

Pisia,o;a,) P(s\a 0,2,)

m A POMDP can be reduced to an (infinite) history tree
m A POMDP can be reduced to an (infinite) belief state tree
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Lecture 2: Markov Decision Processes
L Extensions to MDPs
LAverage Reward MDPs

Ergodic Markov Process (no exam)

An ergodic Markov process is
m Recurrent: each state is visited an infinite number of times

m Aperiodic: each state is visited without any systematic period

An ergodic Markov process has a limiting stationary distribution
d™(s) with the property

d™(s) = Z d"™(s")Pss

s'eS
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Lecture 2: Markov Decision Processes
L Extensions to MDPs
LAverage Reward MDPs

Ergodic MDP (no exam)

Definition
An MDP is ergodic if the Markov chain induced by any policy is
ergodic.

For any policy 7, an ergodic MDP has an average reward per
time-step p™ that is independent of start state.

=

)
o |
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M
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Lecture 2: Markov Decision Processes
L Extensions to MDPs
LAverage Reward MDPs

Average Reward Value Function

(no exam)

m The value function of an undiscounted, ergodic MDP can be
expressed in terms of average reward.
m V. (s) is the extra reward due to starting from state s,

[Z(Rm —0") | Se= ]

There is a corresponding average reward Bellman equation,

Vrn(s) = Eg

(Res1 —p") + Z (Restk1 —p") | Se = 5]
k=1

=Ex [(Ret1 — p") + ¥ (St41) | St = 5]
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Lecture 2: Markov Decision Processes
L Extensions to MDPs
LAverage Reward MDPs

Questions?

The only stupid question is the one you were afraid to
ask but never did.
-Rich Sutton
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