Skip to content
Snippets Groups Projects
Select Git revision
  • 9ab4a43b46a059e8f342f6e181eb3c2dafe1d3d9
  • main default
2 results

unf_policy_evaluation_stepwise_gridworld.py

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    unf_policy_evaluation_stepwise_gridworld.py 982 B
    # This file may not be shared/redistributed without permission. Please read copyright notice in the git repo. If this file contains other copyright notices disregard this text.
    from irlc.gridworld.gridworld_environments import BookGridEnvironment
    from irlc import interactive, train
    from irlc.gridworld.demo_agents.hidden_agents import PolicyEvaluationAgent2
    
    def policy_evaluation_stepwise(env=None):
        agent = PolicyEvaluationAgent2(env, gamma=1., steps_between_policy_improvement=None, only_update_current=True)
        env, agent = interactive(env, agent)
        train(env, agent, num_episodes=100)
        env.close()
    
    def policy_improvement(env=None, q_mode=True):
        agent = PolicyEvaluationAgent2(env, gamma=1.,steps_between_policy_improvement=20)
        env, agent = interactive(env, agent)
        train(env, agent, num_episodes=1000)
        env.close()
    
    if __name__ == "__main__":
        env = BookGridEnvironment(render_mode='human', living_reward=-0.05)
        policy_evaluation_stepwise(env)