Skip to content
Snippets Groups Projects
Commit a1dfbf3a authored by Niels Jeppesen's avatar Niels Jeppesen
Browse files

Added semi-supervised VAE.

parent 763b79a1
Branches
No related tags found
No related merge requests found
Source diff could not be displayed: it is too large. Options to address this: view the blob.
This diff is collapsed.
...@@ -267,7 +267,6 @@ class SemiSupervisedClassifier(ExtendedModel): ...@@ -267,7 +267,6 @@ class SemiSupervisedClassifier(ExtendedModel):
with K.name_scope('Classifier'): with K.name_scope('Classifier'):
l_y = self.instantiate_layers(l_in_x, classifier_layers) l_y = self.instantiate_layers(l_in_x, classifier_layers)
self.classifier = Model(l_in_x, l_y, name='Classifier') self.classifier = Model(l_in_x, l_y, name='Classifier')
self.classifier.summary()
# Define the latent parameters as two hidden layers. # Define the latent parameters as two hidden layers.
# Mean of q(z|x). # Mean of q(z|x).
...@@ -305,7 +304,6 @@ class SemiSupervisedClassifier(ExtendedModel): ...@@ -305,7 +304,6 @@ class SemiSupervisedClassifier(ExtendedModel):
with K.name_scope('Encoder'): with K.name_scope('Encoder'):
z_label = self.instantiate_layers(l_in_x, encoder_layers) z_label = self.instantiate_layers(l_in_x, encoder_layers)
self.encoder = Model([l_in_x, l_in_y], z_label, name='Encoder') self.encoder = Model([l_in_x, l_in_y], z_label, name='Encoder')
self.encoder.summary()
encoder_output_shape = self.encoder.layers[-1].output_shape[1:] encoder_output_shape = self.encoder.layers[-1].output_shape[1:]
l_in_z = Input(shape=encoder_output_shape, name='l_in_z') l_in_z = Input(shape=encoder_output_shape, name='l_in_z')
...@@ -321,7 +319,6 @@ class SemiSupervisedClassifier(ExtendedModel): ...@@ -321,7 +319,6 @@ class SemiSupervisedClassifier(ExtendedModel):
with K.name_scope('Decoder'): with K.name_scope('Decoder'):
l_mux = self.instantiate_layers(concatenate([l_in_z, l_in_y_reshaped]), decoder_layers) l_mux = self.instantiate_layers(concatenate([l_in_z, l_in_y_reshaped]), decoder_layers)
self.decoder = Model([l_in_z, l_in_y], l_mux, name='Decoder') self.decoder = Model([l_in_z, l_in_y], l_mux, name='Decoder')
self.decoder.summary()
# New input variables to use for combined. # New input variables to use for combined.
sym_x_l = Input(shape=input_shape, name='x_l') sym_x_l = Input(shape=input_shape, name='x_l')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment