Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
BachelorDeeplearning
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
s184400
BachelorDeeplearning
Commits
39b53e4c
Commit
39b53e4c
authored
Feb 12, 2021
by
pjtka
Browse files
Options
Downloads
Patches
Plain Diff
big stonks
parent
bf3b1612
Branches
Branches containing commit
No related tags found
1 merge request
!2
Prepocessing
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
image_cropping.py
+52
-11
52 additions, 11 deletions
image_cropping.py
with
52 additions
and
11 deletions
image_cropping.py
+
52
−
11
View file @
39b53e4c
...
...
@@ -17,15 +17,15 @@ time_zero = time.time()
width
=
600
height
=
450
preserve_size
=
600
#
paths = [r'C:\Users\ptrkm\OneDrive\Dokumenter\TestFolder\\']
#
return_folder = r'C:\Users\ptrkm\OneDrive\Dokumenter\TestFolder\return\\'
paths
=
[
r
'
C:\Users\Bruger\OneDrive\DTU - General engineering\6. Semester\Bachelor\ISBI2016_ISIC_Part2B_Training_Data\TestRunImages\\
'
]
return_folder
=
r
'
C:\Users\Bruger\OneDrive\DTU - General engineering\6. Semester\Bachelor\ISBI2016_ISIC_Part2B_Training_Data\TestRunImagesOutput\\
'
paths
=
[
r
'
C:\Users\ptrkm\OneDrive\Dokumenter\TestFolder\\
'
]
return_folder
=
r
'
C:\Users\ptrkm\OneDrive\Dokumenter\TestFolder\return\\
'
#
paths = [r'C:\Users\Bruger\OneDrive\DTU - General engineering\6. Semester\Bachelor\ISBI2016_ISIC_Part2B_Training_Data\TestRunImages\\']
#
return_folder = r'C:\Users\Bruger\OneDrive\DTU - General engineering\6. Semester\Bachelor\ISBI2016_ISIC_Part2B_Training_Data\TestRunImagesOutput\\'
standard_size
=
np
.
asarray
([
height
,
width
])
preserve_ratio
=
True
margin
=
0.1
crop_black
=
True
k
=
5
0
k
=
20
0
threshold
=
0.7
resize
=
False
use_color_constancy
=
True
...
...
@@ -36,7 +36,10 @@ all_heights = 0
all_width
=
0
use_cropping
=
False
errors
=
[]
area_threshold
=
0.80
for
i
,
j
in
enumerate
(
os
.
listdir
(
paths
[
0
])):
# if j == 'ISIC_0000006.jpg':
if
j
!=
'
return
'
:
try
:
image
=
cv2
.
imread
(
paths
[
0
]
+
j
)
...
...
@@ -56,10 +59,15 @@ for i, j in enumerate(os.listdir(paths[0])):
binary_image
=
gray_image
<
threshold_level
n
,
m
,
_
=
image
.
shape
if
np
.
mean
(
binary_image
[
n
//
2
-
k
//
2
:
n
//
2
+
k
//
2
,
0
:
k
])
>
np
.
mean
(
binary_image
[(
n
//
2
-
k
//
2
):
n
//
2
+
k
//
2
,(
m
//
2
-
k
//
2
):
m
//
2
+
k
//
2
]):
binary_image
=
gray_image
>
threshold_level
mean_left
=
np
.
mean
(
image
[
n
//
2
-
k
//
2
:
n
//
2
+
k
//
2
,
:])
mean_right
=
np
.
mean
(
image
[
n
//
2
-
k
//
2
:
n
//
2
+
k
//
2
,
m
-
k
:])
mean_top
=
np
.
mean
(
image
[:,
m
//
2
-
m
//
2
:
m
//
2
+
k
//
2
])
mean_bottom
=
np
.
mean
(
image
[
n
-
k
:,
m
//
2
-
m
//
2
:
m
//
2
+
k
//
2
])
mean_middle
=
np
.
mean
(
image
[
n
//
2
-
k
:
n
//
2
+
k
,
m
//
2
-
k
:
m
//
2
+
k
])
if
mean_middle
>
np
.
max
([
mean_left
,
mean_top
]):
binary_image
=
gray_image
>
threshold_level
# We now find features in the binarised blobs
blob_labels
=
measure
.
label
(
binary_image
)
...
...
@@ -73,12 +81,37 @@ for i, j in enumerate(os.listdir(paths[0])):
x_max
=
(
largest_blob
.
centroid
[
1
]
+
radius
-
margin
*
radius
).
astype
(
int
)
y_min
=
(
largest_blob
.
centroid
[
0
]
-
radius
+
margin
*
radius
).
astype
(
int
)
y_max
=
(
largest_blob
.
centroid
[
0
]
+
radius
-
margin
*
radius
).
astype
(
int
)
use_cropping
=
True
else
:
use_cropping
=
False
if
x_min
<
0
or
x_max
>
image
.
shape
[
1
]
or
y_min
<
0
or
y_max
>
image
.
shape
[
0
]:
if
len
(
blob_features
)
>
1
:
x_center
=
largest_blob
.
centroid
[
1
]
y_center
=
largest_blob
.
centroid
[
0
]
radii
=
np
.
arange
(
0
,
radius
,
radius
/
20
)
passed
=
False
for
rad
in
radii
:
rad
=
rad
.
astype
(
int
)
x_min
=
(
largest_blob
.
centroid
[
1
]
-
rad
+
margin
*
rad
).
astype
(
int
)
x_max
=
(
largest_blob
.
centroid
[
1
]
+
rad
-
margin
*
rad
).
astype
(
int
)
y_min
=
(
largest_blob
.
centroid
[
0
]
-
rad
+
margin
*
rad
).
astype
(
int
)
y_max
=
(
largest_blob
.
centroid
[
0
]
+
rad
-
margin
*
rad
).
astype
(
int
)
if
x_min
<
0
or
x_max
>
image
.
shape
[
1
]
or
y_min
<
0
or
y_max
>
image
.
shape
[
0
]:
break
area_coefficient
=
np
.
sum
(
binary_image
[(
y_center
-
rad
).
astype
(
int
):(
y_center
+
rad
).
astype
(
int
),
(
x_center
-
rad
).
astype
(
int
):(
x_center
+
rad
).
astype
(
int
)])
/
largest_blob
.
area
if
area_coefficient
>=
area_threshold
:
passed
=
True
radius
=
rad
x_min
=
(
largest_blob
.
centroid
[
1
]
-
radius
+
margin
*
radius
).
astype
(
int
)
x_max
=
(
largest_blob
.
centroid
[
1
]
+
radius
-
margin
*
radius
).
astype
(
int
)
y_min
=
(
largest_blob
.
centroid
[
0
]
-
radius
+
margin
*
radius
).
astype
(
int
)
y_max
=
(
largest_blob
.
centroid
[
0
]
+
radius
-
margin
*
radius
).
astype
(
int
)
use_cropping
=
True
if
len
(
blob_features
)
>
1
and
not
passed
:
indices
=
np
.
where
(
np
.
arange
(
len
(
blob_features
))
!=
largest_blob_idx
)[
0
].
astype
(
int
)
without_largest
=
[
blob_features
[
idx
]
for
idx
in
indices
]
...
...
@@ -97,6 +130,7 @@ for i, j in enumerate(os.listdir(paths[0])):
else
:
use_cropping
=
True
if
use_cropping
:
mean_inside
=
np
.
mean
(
image
[
y_min
:
y_max
,
x_min
:
x_max
,
:])
exclude_x
=
np
.
ones
(
image
.
shape
[
1
],
dtype
=
int
)
exclude_y
=
np
.
ones
(
image
.
shape
[
0
],
dtype
=
int
)
...
...
@@ -104,8 +138,13 @@ for i, j in enumerate(os.listdir(paths[0])):
mean_outside
=
(
np
.
mean
(
image
[:
y_min
,:,:])
+
np
.
mean
(
image
[
y_min
:
y_max
,:
x_min
,:])
+
np
.
mean
(
image
[
y_max
:,:,:])
+
np
.
mean
(
image
[
y_min
:
y_max
,
x_max
:,:]))
/
4
if
np
.
sum
(
binary_image
)
/
(
n
*
m
)
<
0.05
or
np
.
sum
(
binary_image
)
/
(
n
*
m
)
>
0.95
:
use_cropping
=
False
if
use_cropping
:
image
=
image
[
y_min
:
y_max
,
x_min
:
x_max
,
:]
if
resize
:
if
preserve_ratio
:
if
image
.
shape
[
0
]
>
image
.
shape
[
1
]:
...
...
@@ -133,7 +172,9 @@ for i, j in enumerate(os.listdir(paths[0])):
im
.
save
(
return_folder
+
j
.
name
.
replace
(
'
.jpg
'
,
'
.png
'
))
else
:
im
=
Image
.
fromarray
(
new_image
.
astype
(
'
uint8
'
)).
convert
(
'
RGB
'
)
im
.
save
(
return_folder
+
j
)
if
i
%
1000
:
print
(
i
)
time_one
=
time
.
time
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment