Skip to content
Snippets Groups Projects
Commit 4fa48ce4 authored by Pedro L. Magalhães's avatar Pedro L. Magalhães
Browse files

Added support for non-convex functions.

parent e7a9bcd4
No related branches found
No related tags found
1 merge request!6Stats
This commit is part of merge request !6. Comments created here will be created in the context of that merge request.
......@@ -205,7 +205,7 @@ def price_block_other(
# if not convex_price_function:
# # delta variables
# model.var_delta_glqpks = pyo.Var(
# model.var_active_segment_glqpks = pyo.Var(
# model.set_GLQPKS, within=pyo.Binary
# )
......@@ -214,7 +214,7 @@ def price_block_other(
# return (
# m.var_if_glqpks[(g,l,q,p,k,s)] <=
# m.param_v_max_glqpks[(g,l,q,p,k,s)]*
# m.var_delta_glqpks[(g,l,q,p,k,s)]
# m.var_active_segment_glqpks[(g,l,q,p,k,s)]
# )
# model.constr_empty_segment_if_delta_zero_imp = pyo.Constraint(
# model.set_GLQPKS_imp, rule=rule_constr_empty_segment_if_delta_zero_imp
......@@ -225,7 +225,7 @@ def price_block_other(
# return (
# m.var_ef_glqpks[(g,l,q,p,k,s)] <=
# m.param_v_max_glqpks[(g,l,q,p,k,s)]*
# m.var_delta_glqpks[(g,l,q,p,k,s)]
# m.var_active_segment_glqpks[(g,l,q,p,k,s)]
# )
# model.constr_empty_segment_if_delta_zero_exp = pyo.Constraint(
# model.set_GLQPKS_exp, rule=rule_constr_empty_segment_if_delta_zero_exp
......@@ -236,8 +236,8 @@ def price_block_other(
# if s == len(m.set_S)-1:
# return pyo.Constraint.Skip
# return (
# m.var_delta_glqpks[(g,l,q,p,k,s)] >=
# m.var_delta_glqpks[(g,l,q,p,k,s+1)]
# m.var_active_segment_glqpks[(g,l,q,p,k,s)] >=
# m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]
# )
# model.constr_delta_summing_logic = pyo.Constraint(
# model.set_GLQPKS, rule=rule_constr_delta_summing_logic
......@@ -247,8 +247,8 @@ def price_block_other(
# if s == len(m.set_S)-1:
# return pyo.Constraint.Skip
# return (
# 1-m.var_delta_glqpks[(g,l,q,p,k,s)] >=
# m.var_delta_glqpks[(g,l,q,p,k,s+1)]
# 1-m.var_active_segment_glqpks[(g,l,q,p,k,s)] >=
# m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]
# )
# model.constr_delta_next_zeros = pyo.Constraint(
# model.set_GLQPKS, rule=rule_constr_delta_next_zeros
......@@ -257,19 +257,260 @@ def price_block_other(
# *************************************************************************
# *************************************************************************
# *****************************************************************************
# *****************************************************************************
# def price_other2(
# model: pyo.AbstractModel,
# convex_price_function: bool = False,
# enable_default_values: bool = True,
# enable_validation: bool = True,
# enable_initialisation: bool = True
# ):
# # set of price segments
# model.set_S = pyo.Set(model.set_GL_exp_imp, model.set_QPK)
# # set of GLQKS tuples
# def init_set_GLQPKS(m):
# return (
# (g, l, q, p, k, s)
# # for (g,l) in m.set_GL_exp_imp
# # for (q,k) in m.set_QK
# for (g, l, q, p, k) in m.set_S
# for s in m.set_S[(g, l, q, p, k)]
# )
# model.set_GLQPKS = pyo.Set(
# dimen=6, initialize=(init_set_GLQPKS if enable_initialisation else None)
# )
# def init_set_GLQPKS_exp(m):
# return (
# glqpks for glqpks in m.set_GLQPKS if glqpks[1] in m.set_L_exp[glqpks[0]]
# )
# model.set_GLQPKS_exp = pyo.Set(
# dimen=6, initialize=(init_set_GLQPKS_exp if enable_initialisation else None)
# )
# def init_set_GLQPKS_imp(m):
# return (
# glqpks for glqpks in m.set_GLQPKS if glqpks[1] in m.set_L_imp[glqpks[0]]
# )
# model.set_GLQPKS_imp = pyo.Set(
# dimen=6, initialize=(init_set_GLQPKS_imp if enable_initialisation else None)
# )
# # *************************************************************************
# # *************************************************************************
# # parameters
# # resource prices
# model.param_p_glqpks = pyo.Param(model.set_GLQPKS, within=pyo.NonNegativeReals)
# # maximum resource volumes for each prices
# model.param_v_max_glqpks = pyo.Param(
# model.set_GLQPKS,
# within=pyo.NonNegativeReals
# )
# # *************************************************************************
# # *************************************************************************
# # variables
# # *************************************************************************
# # *************************************************************************
# # exported flow
# # TODO: validate the bounds by ensuring inf. cap. only exists in last segm.
# def bounds_var_ef_glqpks(m, g, l, q, p, k, s):
# if (g, l, q, p, k, s) in m.param_v_max_glqpks:
# # predefined finite capacity
# return (0, m.param_v_max_glqpks[(g, l, q, p, k, s)])
# else:
# # infinite capacity
# return (0, None)
# model.var_ef_glqpks = pyo.Var(
# model.set_GLQPKS_exp, within=pyo.NonNegativeReals, bounds=bounds_var_ef_glqpks
# )
# # imported flow
# def bounds_var_if_glqpks(m, g, l, q, p, k, s):
# if (g, l, q, p, k, s) in m.param_v_max_glqpks:
# # predefined finite capacity
# return (0, m.param_v_max_glqpks[(g, l, q, p, k, s)])
# else:
# # infinite capacity
# return (0, None)
# model.var_if_glqpks = pyo.Var(
# model.set_GLQPKS_imp, within=pyo.NonNegativeReals, bounds=bounds_var_if_glqpks
# )
# # *************************************************************************
# # *************************************************************************
# # exported flow revenue
# def rule_constr_exp_flow_revenue(m, g, l, q, p, k):
# return (
# sum(
# m.var_ef_glqpks[(g, l, q, p, k, s)]
# * m.param_p_glqpks[(g, l, q, p, k, s)]
# for s in m.set_S[(g, l, q, p, k)]
# )
# == m.var_efr_glqpk[(g, l, q, p, k)]
# )
# model.constr_exp_flow_revenue = pyo.Constraint(
# model.set_GL_exp, model.set_QPK, rule=rule_constr_exp_flow_revenue
# )
# # imported flow cost
# def rule_constr_imp_flow_cost(m, g, l, q, p, k):
# return (
# sum(
# m.var_if_glqpks[(g, l, q, p, k, s)]
# * m.param_p_glqpks[(g, l, q, p, k, s)]
# for s in m.set_S[(g, l, q, p, k)]
# )
# == m.var_ifc_glqpk[(g, l, q, p, k)]
# )
# model.constr_imp_flow_cost = pyo.Constraint(
# model.set_GL_imp, model.set_QPK, rule=rule_constr_imp_flow_cost
# )
# # exported flows
# def rule_constr_exp_flows(m, g, l, q, p, k):
# return sum(
# m.var_v_glljqk[(g, l_star, l, j, q, k)]
# * m.param_eta_glljqk[(g, l_star, l, j, q, k)]
# for l_star in m.set_L[g]
# if l_star not in m.set_L_exp[g]
# for j in m.set_J[(g, l_star, l)] # only directed arcs
# ) == sum(m.var_ef_glqpks[(g, l, q, p, k, s)] for s in m.set_S[(g, l, q, p, k)])
# model.constr_exp_flows = pyo.Constraint(
# model.set_GL_exp, model.set_QPK, rule=rule_constr_exp_flows
# )
# # imported flows
# def rule_constr_imp_flows(m, g, l, q, p, k):
# return sum(
# m.var_v_glljqk[(g, l, l_star, j, q, k)]
# for l_star in m.set_L[g]
# if l_star not in m.set_L_imp[g]
# for j in m.set_J[(g, l, l_star)] # only directed arcs
# ) == sum(m.var_if_glqpks[(g, l, q, p, k, s)] for s in m.set_S[(g, l, q, p, k)])
# model.constr_imp_flows = pyo.Constraint(
# model.set_GL_imp, model.set_QPK, rule=rule_constr_imp_flows
# )
# # *************************************************************************
# # *************************************************************************
# # non-convex price functions
# if not convex_price_function:
# # delta variables
# model.var_active_segment_glqpks = pyo.Var(
# model.set_GLQPKS, within=pyo.Binary
# )
# # segments must be empty if the respective delta variable is zero
# def rule_constr_empty_segment_if_delta_zero_imp(m, g, l, q, p, k, s):
# return (
# m.var_if_glqpks[(g,l,q,p,k,s)] <=
# m.param_v_max_glqpks[(g,l,q,p,k,s)]*
# m.var_active_segment_glqpks[(g,l,q,p,k,s)]
# )
# model.constr_empty_segment_if_delta_zero_imp = pyo.Constraint(
# model.set_GLQPKS_imp, rule=rule_constr_empty_segment_if_delta_zero_imp
# )
# # segments must be empty if the respective delta variable is zero
# def rule_constr_empty_segment_if_delta_zero_exp(m, g, l, q, p, k, s):
# return (
# m.var_ef_glqpks[(g,l,q,p,k,s)] <=
# m.param_v_max_glqpks[(g,l,q,p,k,s)]*
# m.var_active_segment_glqpks[(g,l,q,p,k,s)]
# )
# model.constr_empty_segment_if_delta_zero_exp = pyo.Constraint(
# model.set_GLQPKS_exp, rule=rule_constr_empty_segment_if_delta_zero_exp
# )
# # if delta var is one, previous ones must be one too
# # if delta var is zero, the next ones must also be zero
# def rule_constr_delta_summing_logic(m, g, l, q, p, k, s):
# if s == len(m.set_S[(g,l,q,p,k)])-1:
# # last segment, skip
# return pyo.Constraint.Skip
# return (
# m.var_active_segment_glqpks[(g,l,q,p,k,s)] >=
# m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]
# )
# model.constr_delta_summing_logic = pyo.Constraint(
# model.set_GLQPKS, rule=rule_constr_delta_summing_logic
# )
# # if a segment is not completely used, the next ones must remain empty
# def rule_constr_fill_up_segment_before_next(m, g, l, q, p, k, s):
# if s == len(m.set_S[(g,l,q,p,k)])-1:
# # last segment, skip
# return pyo.Constraint.Skip
# if (g,l) in m.set_GL_imp:
# return (
# m.var_if_glqpks[(g,l,q,p,k,s)] >=
# m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]*
# m.param_v_max_glqpks[(g,l,q,p,k,s)]
# )
# else:
# return (
# m.var_ef_glqpks[(g,l,q,p,k,s)] >=
# m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]*
# m.param_v_max_glqpks[(g,l,q,p,k,s)]
# )
# # return (
# # m.var_if_glqpks[(g,l,q,p,k,s)]/m.param_v_max_glqpks[(g,l,q,p,k,s)] >=
# # m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]
# # )
# # return (
# # m.param_v_max_glqpks[(g,l,q,p,k,s)]-m.var_if_glqpks[(g,l,q,p,k,s)] <=
# # m.param_v_max_glqpks[(g,l,q,p,k,s)]*(1- m.var_active_segment_glqpks[(g,l,q,p,k,s+1)])
# # )
# model.constr_fill_up_segment_before_next = pyo.Constraint(
# model.set_GLQPKS, rule=rule_constr_fill_up_segment_before_next
# )
# *****************************************************************************
# *****************************************************************************
def price_other(
model: pyo.AbstractModel,
convex_price_function: bool = False,
convex_price_function: bool = True,
enable_default_values: bool = True,
enable_validation: bool = True,
enable_initialisation: bool = True
):
# auxiliary set for pyomo
model.set_GLQPK = model.set_GL_exp_imp*model.set_QPK
# set of price segments
model.set_S = pyo.Set(model.set_GL_exp_imp, model.set_QPK)
model.set_S = pyo.Set(model.set_GLQPK)
# set of GLQKS tuples
def init_set_GLQPKS(m):
......@@ -285,24 +526,6 @@ def price_other(
dimen=6, initialize=(init_set_GLQPKS if enable_initialisation else None)
)
def init_set_GLQPKS_exp(m):
return (
glqpks for glqpks in m.set_GLQPKS if glqpks[1] in m.set_L_exp[glqpks[0]]
)
model.set_GLQPKS_exp = pyo.Set(
dimen=6, initialize=(init_set_GLQPKS_exp if enable_initialisation else None)
)
def init_set_GLQPKS_imp(m):
return (
glqpks for glqpks in m.set_GLQPKS if glqpks[1] in m.set_L_imp[glqpks[0]]
)
model.set_GLQPKS_imp = pyo.Set(
dimen=6, initialize=(init_set_GLQPKS_imp if enable_initialisation else None)
)
# *************************************************************************
# *************************************************************************
......@@ -312,6 +535,13 @@ def price_other(
model.param_p_glqpks = pyo.Param(model.set_GLQPKS, within=pyo.NonNegativeReals)
# price function convexity
model.param_price_function_is_convex = pyo.Param(
model.set_GLQPK,
within=pyo.Boolean
)
# maximum resource volumes for each prices
model.param_v_max_glqpks = pyo.Param(
......@@ -327,94 +557,65 @@ def price_other(
# *************************************************************************
# *************************************************************************
# exported flow
# TODO: validate the bounds by ensuring inf. cap. only exists in last segm.
def bounds_var_ef_glqpks(m, g, l, q, p, k, s):
# import and export flows
def bounds_var_trans_flows_glqpks(m, g, l, q, p, k, s):
if (g, l, q, p, k, s) in m.param_v_max_glqpks:
# predefined finite capacity
return (0, m.param_v_max_glqpks[(g, l, q, p, k, s)])
else:
# infinite capacity
return (0, None)
model.var_ef_glqpks = pyo.Var(
model.set_GLQPKS_exp, within=pyo.NonNegativeReals, bounds=bounds_var_ef_glqpks
)
# imported flow
def bounds_var_if_glqpks(m, g, l, q, p, k, s):
if (g, l, q, p, k, s) in m.param_v_max_glqpks:
# predefined finite capacity
return (0, m.param_v_max_glqpks[(g, l, q, p, k, s)])
else:
# infinite capacity
return (0, None)
model.var_if_glqpks = pyo.Var(
model.set_GLQPKS_imp, within=pyo.NonNegativeReals, bounds=bounds_var_if_glqpks
model.var_trans_flows_glqpks = pyo.Var(
model.set_GLQPKS, within=pyo.NonNegativeReals, bounds=bounds_var_trans_flows_glqpks
)
# *************************************************************************
# *************************************************************************
# exported flow revenue
def rule_constr_exp_flow_revenue(m, g, l, q, p, k):
# import flow costs and export flow revenues
def rule_constr_trans_monetary_flows(m, g, l, q, p, k):
if (g,l) in m.set_GL_imp:
return (
sum(
m.var_ef_glqpks[(g, l, q, p, k, s)]
m.var_trans_flows_glqpks[(g, l, q, p, k, s)]
* m.param_p_glqpks[(g, l, q, p, k, s)]
for s in m.set_S[(g, l, q, p, k)]
)
== m.var_efr_glqpk[(g, l, q, p, k)]
)
model.constr_exp_flow_revenue = pyo.Constraint(
model.set_GL_exp, model.set_QPK, rule=rule_constr_exp_flow_revenue
== m.var_ifc_glqpk[(g, l, q, p, k)]
)
# imported flow cost
def rule_constr_imp_flow_cost(m, g, l, q, p, k):
else:
return (
sum(
m.var_if_glqpks[(g, l, q, p, k, s)]
m.var_trans_flows_glqpks[(g, l, q, p, k, s)]
* m.param_p_glqpks[(g, l, q, p, k, s)]
for s in m.set_S[(g, l, q, p, k)]
)
== m.var_ifc_glqpk[(g, l, q, p, k)]
== m.var_efr_glqpk[(g, l, q, p, k)]
)
model.constr_imp_flow_cost = pyo.Constraint(
model.set_GL_imp, model.set_QPK, rule=rule_constr_imp_flow_cost
model.constr_trans_monetary_flows = pyo.Constraint(
model.set_GLQPK, rule=rule_constr_trans_monetary_flows
)
# exported flows
def rule_constr_exp_flows(m, g, l, q, p, k):
# imported and exported flows
def rule_constr_trans_flows(m, g, l, q, p, k):
if (g,l) in m.set_GL_imp:
return sum(
m.var_v_glljqk[(g, l, l_star, j, q, k)]
for l_star in m.set_L[g]
if l_star not in m.set_L_imp[g]
for j in m.set_J[(g, l, l_star)] # only directed arcs
) == sum(m.var_trans_flows_glqpks[(g, l, q, p, k, s)] for s in m.set_S[(g, l, q, p, k)])
else:
return sum(
m.var_v_glljqk[(g, l_star, l, j, q, k)]
* m.param_eta_glljqk[(g, l_star, l, j, q, k)]
for l_star in m.set_L[g]
if l_star not in m.set_L_exp[g]
for j in m.set_J[(g, l_star, l)] # only directed arcs
) == sum(m.var_ef_glqpks[(g, l, q, p, k, s)] for s in m.set_S[(g, l, q, p, k)])
model.constr_exp_flows = pyo.Constraint(
model.set_GL_exp, model.set_QPK, rule=rule_constr_exp_flows
)
) == sum(m.var_trans_flows_glqpks[(g, l, q, p, k, s)] for s in m.set_S[(g, l, q, p, k)])
# imported flows
def rule_constr_imp_flows(m, g, l, q, p, k):
return sum(
m.var_v_glljqk[(g, l, l_star, j, q, k)]
for l_star in m.set_L[g]
if l_star not in m.set_L_imp[g]
for j in m.set_J[(g, l, l_star)] # only directed arcs
) == sum(m.var_if_glqpks[(g, l, q, p, k, s)] for s in m.set_S[(g, l, q, p, k)])
model.constr_imp_flows = pyo.Constraint(
model.set_GL_imp, model.set_QPK, rule=rule_constr_imp_flows
model.constr_trans_flows = pyo.Constraint(
model.set_GLQPK, rule=rule_constr_trans_flows
)
# *************************************************************************
......@@ -422,44 +623,36 @@ def price_other(
# non-convex price functions
if not convex_price_function:
# delta variables
model.var_delta_glqpks = pyo.Var(
model.var_active_segment_glqpks = pyo.Var(
model.set_GLQPKS, within=pyo.Binary
)
# segments must be empty if the respective delta variable is zero
def rule_constr_empty_segment_if_delta_zero_imp(m, g, l, q, p, k, s):
return (
m.var_if_glqpks[(g,l,q,p,k,s)] <=
m.param_v_max_glqpks[(g,l,q,p,k,s)]*
m.var_delta_glqpks[(g,l,q,p,k,s)]
)
model.constr_empty_segment_if_delta_zero_imp = pyo.Constraint(
model.set_GLQPKS_imp, rule=rule_constr_empty_segment_if_delta_zero_imp
)
# segments must be empty if the respective delta variable is zero
def rule_constr_empty_segment_if_delta_zero_exp(m, g, l, q, p, k, s):
def rule_constr_empty_segment_if_delta_zero(m, g, l, q, p, k, s):
if len(m.set_S[(g,l,q,p,k)]) == 1 or m.param_price_function_is_convex[(g,l,q,p,k)]:
# single segment, skip
# convex, skip
return pyo.Constraint.Skip
return (
m.var_ef_glqpks[(g,l,q,p,k,s)] <=
m.var_trans_flows_glqpks[(g,l,q,p,k,s)] <=
m.param_v_max_glqpks[(g,l,q,p,k,s)]*
m.var_delta_glqpks[(g,l,q,p,k,s)]
m.var_active_segment_glqpks[(g,l,q,p,k,s)]
)
model.constr_empty_segment_if_delta_zero_exp = pyo.Constraint(
model.set_GLQPKS_exp, rule=rule_constr_empty_segment_if_delta_zero_exp
model.constr_empty_segment_if_delta_zero = pyo.Constraint(
model.set_GLQPKS, rule=rule_constr_empty_segment_if_delta_zero
)
# if delta var is one, previous ones must be one too
# if delta var is zero, the next ones must also be zero
def rule_constr_delta_summing_logic(m, g, l, q, p, k, s):
if s == len(m.set_S[(g,l,q,p,k)])-1:
if s == len(m.set_S[(g,l,q,p,k)])-1 or m.param_price_function_is_convex[(g,l,q,p,k)]:
# last segment, skip
# convex, skip
return pyo.Constraint.Skip
return (
m.var_delta_glqpks[(g,l,q,p,k,s)] >=
m.var_delta_glqpks[(g,l,q,p,k,s+1)]
m.var_active_segment_glqpks[(g,l,q,p,k,s)] >=
m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]
)
model.constr_delta_summing_logic = pyo.Constraint(
model.set_GLQPKS, rule=rule_constr_delta_summing_logic
......@@ -467,28 +660,22 @@ def price_other(
# if a segment is not completely used, the next ones must remain empty
def rule_constr_fill_up_segment_before_next(m, g, l, q, p, k, s):
if s == len(m.set_S[(g,l,q,p,k)])-1:
if s == len(m.set_S[(g,l,q,p,k)])-1 or m.param_price_function_is_convex[(g,l,q,p,k)]:
# last segment, skip
# convex, skip
return pyo.Constraint.Skip
if (g,l) in m.set_GL_imp:
return (
m.var_if_glqpks[(g,l,q,p,k,s)] >=
m.var_delta_glqpks[(g,l,q,p,k,s+1)]*
m.param_v_max_glqpks[(g,l,q,p,k,s)]
)
else:
return (
m.var_ef_glqpks[(g,l,q,p,k,s)] >=
m.var_delta_glqpks[(g,l,q,p,k,s+1)]*
m.var_trans_flows_glqpks[(g,l,q,p,k,s)] >=
m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]*
m.param_v_max_glqpks[(g,l,q,p,k,s)]
)
# return (
# m.var_if_glqpks[(g,l,q,p,k,s)]/m.param_v_max_glqpks[(g,l,q,p,k,s)] >=
# m.var_delta_glqpks[(g,l,q,p,k,s+1)]
# m.var_active_segment_glqpks[(g,l,q,p,k,s+1)]
# )
# return (
# m.param_v_max_glqpks[(g,l,q,p,k,s)]-m.var_if_glqpks[(g,l,q,p,k,s)] <=
# m.param_v_max_glqpks[(g,l,q,p,k,s)]*(1- m.var_delta_glqpks[(g,l,q,p,k,s+1)])
# m.param_v_max_glqpks[(g,l,q,p,k,s)]*(1- m.var_active_segment_glqpks[(g,l,q,p,k,s+1)])
# )
model.constr_fill_up_segment_before_next = pyo.Constraint(
model.set_GLQPKS, rule=rule_constr_fill_up_segment_before_next
......
......@@ -2549,6 +2549,17 @@ class InfrastructurePlanningProblem(EnergySystem):
for s in set_S[(g, l, q, p, k)]
}
# price function convexity
param_price_function_is_convex = {
(g, l, q, p, k): (
self.networks[g].nodes[l][Network.KEY_NODE_PRICES][(q, p, k)].price_monotonically_increasing_with_volume()
if l in set_L_imp[g] else
self.networks[g].nodes[l][Network.KEY_NODE_PRICES][(q, p, k)].price_monotonically_decreasing_with_volume()
)
for (g, l, q, p, k) in set_S
}
# maximum resource volume per segment (infinity is the default)
param_v_max_glqpks = {
......@@ -3451,6 +3462,7 @@ class InfrastructurePlanningProblem(EnergySystem):
"param_c_df_qp": param_c_df_qp,
"param_c_time_qpk": param_c_time_qpk,
"param_p_glqpks": param_p_glqpks,
"param_price_function_is_convex": param_price_function_is_convex,
"param_v_max_glqpks": param_v_max_glqpks,
# *****************************************************************
# converters
......
......@@ -99,7 +99,7 @@ def statistics(ipp: InfrastructurePlanningProblem,
imports_qpk = {
qpk: pyo.value(
sum(
ipp.instance.var_if_glqpks[(g,l_imp,*qpk, s)]
ipp.instance.var_trans_flows_glqpks[(g,l_imp,*qpk, s)]
for g, l_imp in import_node_keys
# for g in ipp.networks
# for l_imp in ipp.networks[g].import_nodes
......@@ -114,7 +114,7 @@ def statistics(ipp: InfrastructurePlanningProblem,
exports_qpk = {
qpk: pyo.value(
sum(
ipp.instance.var_ef_glqpks[(g,l_exp,*qpk, s)]
ipp.instance.var_trans_flows_glqpks[(g,l_exp,*qpk, s)]
for g, l_exp in export_node_keys
# for g in ipp.networks
# for l_exp in ipp.networks[g].export_nodes
......
......@@ -629,8 +629,6 @@ class TestESIPPProblem:
# the objective function should be -7.5
assert math.isclose(pyo.value(ipp.instance.obj_f), -2.0, abs_tol=1e-3)
# TODO: trigger errors with infinite capacity segments in non-convex functions
# *************************************************************************
# *************************************************************************
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment